Number of found documents: 1639
Published from to

Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Vacek, Karel; Sváček, P.
2024 - English
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown. Keywords: finite element method; arbitrary Lagrangian-Eulerian method; Scott-Vogelius element; Taylor-Hood element Available in digital repository of the ASCR
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements

This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible ...

Vacek, Karel; Sváček, P.
Matematický ústav, 2024

Numerical study of the steady airflow in the human respiratory system during inhaling and exhaling
Lancmanová, Anna; Bodnár, Tomáš
2024 - English
This paper presents some of the initial results of the numerical simulations of a steady turbulent flow in human upper airways during inhalation and exhalation. The mathematical model is based on the system of Reynolds-Averaged incompressible Navier-Stokes equations complemented by the SST k − ω turbulence model. The simulations were performed using finite-volume open source solver OpenFOAM on a realistic three-dimensional geometry. The main aim of this particular study is to verify the computational setup with special focus on appropriate choice and implementation of boundary conditions. The prescribed boundary conditions are chosen to mimic the physiological conditions during normal breathing cycle. This study aims to gain an insight into the airflow behavior during the inhalation and exhalation process by comparing the results of two distinct simulations corresponding to two different (opposite) flow rates . The obtained local flow rates and flow fields for both cases are presented and mutually compared. This initial work should serve as a foundation for future more complex simulations that will include the time-dependent and compressible effects. Keywords: human airways; incompressible Navier-Stokes; OpenFOAM Available in digital repository of the ASCR
Numerical study of the steady airflow in the human respiratory system during inhaling and exhaling

This paper presents some of the initial results of the numerical simulations of a steady turbulent flow in human upper airways during inhalation and exhalation. The mathematical model is based on the ...

Lancmanová, Anna; Bodnár, Tomáš
Matematický ústav, 2024

Numerical evaluation of mass-diffusive compressible fluids flows models
Bodnár, Tomáš; Fraunié, P.
2024 - English
This contribution presents first numerical tests of some recently published alternative models for solution of viscous compressible and nearly incompressible models. All models are solved by high resolution compact finite difference scheme with strong stability preserving RungeKutta time stepping. The two simple but challenging computational test cases are presented, based on the double-periodic shear layer and the Kelvin-Helmholtz instability. The obtained time-dependent flow fields are showing pronounced shear and vorticity layers being resolved by the standard as well as by the new mass-diffusive modified models. The preliminary results show that the new models are viable alternative to the well established classical models. Keywords: compressible Navier-Stokes; nearly incompressible flow; mass diffusion; compact finite-difference Available in digital repository of the ASCR
Numerical evaluation of mass-diffusive compressible fluids flows models

This contribution presents first numerical tests of some recently published alternative models for solution of viscous compressible and nearly incompressible models. All models are solved by high ...

Bodnár, Tomáš; Fraunié, P.
Matematický ústav, 2024

Motion of fluids in the moving domain
Nečasová, Šárka
2024 - English
It is a survay paper where the problem of the existence of weak solutions of compressible barotropic solutions in a moving bounded domain is studied. Keywords: compressible fluid; moving domain; weak solutions Available in digital repository of the ASCR
Motion of fluids in the moving domain

It is a survay paper where the problem of the existence of weak solutions of compressible barotropic solutions in a moving bounded domain is studied.

Nečasová, Šárka
Matematický ústav, 2024

TESTING THE METHOD OF MULTIPLE SCALES AND THE AVERAGING PRINCIPLE FOR MODEL PARAMETER ESTIMATION OF QUASIPERIODIC TWO TIME-SCALE MODELS
Papáček, Štěpán; Matonoha, Ctirad
2023 - English
Some dynamical systems are characterized by more than one timescale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular perturbation methods based on the slow-fast decomposition can serve for an enhanced parameter estimation when the slowly changing features are rigorously treated. Although the ultimate goal is to reduce the standard error for the estimated parameters, here we test two methods for numerical approximations of the solution of associated forward problem: (i) the multiple time-scales method, and (ii) the method of averaging. On a case study, being an under-damped harmonic oscillator containing two state variables and two parameters, the method of averaging gives well (theoretically predicted) results, while the use of multiple time-scales method is not suitable for our purposes. Keywords: Dynamical system; Singular perturbation; Averaging; Parameter estimation; Slow-fast decomposition; Damped oscillations Fulltext is available at external website.
TESTING THE METHOD OF MULTIPLE SCALES AND THE AVERAGING PRINCIPLE FOR MODEL PARAMETER ESTIMATION OF QUASIPERIODIC TWO TIME-SCALE MODELS

Some dynamical systems are characterized by more than one timescale, e.g. two well separated time-scales are typical for quasiperiodic systems. The aim of this paper is to show how singular ...

Papáček, Štěpán; Matonoha, Ctirad
Ústav teorie informace a automatizace, 2023

Some modifications of the limited-memory variable metric optimization methods
Vlček, Jan; Lukšan, Ladislav
2023 - English
Several modifications of the limited-memory variable metric (or quasi-Newton) line search methods for large scale unconstrained optimization are investigated. First the block version of the symmetric rank-one (SR1) update formula is derived in a similar way as for the block BFGS update in Vlˇcek and Lukˇsan (Numerical Algorithms 2019). The block SR1 formula is then modified to obtain an update which can reduce the required number of arithmetic operations per iteration. Since it usually violates the corresponding secant conditions, this update is combined with the shifting investigated in Vlˇcek and Lukˇsan (J. Comput. Appl. Math. 2006). Moreover, a new efficient way how to realize the limited-memory shifted BFGS method is proposed. For a class of methods based on the generalized shifted economy BFGS update, global convergence is established. A numerical comparison with the standard L-BFGS and BNS methods is given. Keywords: unconstrained minimization; variable metric methods; limited-memory methods; variationally derived methods; arithmetic operations reduction; global convergence Available in a digital repository NRGL
Some modifications of the limited-memory variable metric optimization methods

Several modifications of the limited-memory variable metric (or quasi-Newton) line search methods for large scale unconstrained optimization are investigated. First the block version of the symmetric ...

Vlček, Jan; Lukšan, Ladislav
Ústav informatiky, 2023

On the structure and values of betweenness centrality in dense betweenness-uniform graphs
Ghanbari, B.; Hartman, David; Jelínek, V.; Pokorná, Aneta; Šámal, R.; Valtr, P.
2023 - English
Betweenness centrality is a network centrality measure based on the amount ofshortest paths passing through a given vertex. A graph is betweenness-uniform (BUG)if all vertices have an equal value of betweenness centrality. In this contribution, wefocus on betweenness-uniform graphs with betweenness centrality below one. Wedisprove a conjecture about the existence of a BUG with betweenness valueαforany rational numberαfrom the interval (3/4,∞) by showing that only very few be-tweenness centrality values below 6/7 are attained for at least one BUG. Furthermore,among graphs with diameter at least three, there are no betweenness-uniform graphswith a betweenness centrality smaller than one. In graphs of smaller diameter, thesame can be shown under a uniformity condition on the components of the comple-ment. Available in digital repository of the ASCR
On the structure and values of betweenness centrality in dense betweenness-uniform graphs

Betweenness centrality is a network centrality measure based on the amount ofshortest paths passing through a given vertex. A graph is betweenness-uniform (BUG)if all vertices have an equal value of ...

Ghanbari, B.; Hartman, David; Jelínek, V.; Pokorná, Aneta; Šámal, R.; Valtr, P.
Ústav informatiky, 2023

Different Boundary Conditions For LES Solver PALM 6.0 Used for ABL in Tunnel Experiment
Řezníček, Hynek; Geletič, Jan; Bureš, Martin; Krč, Pavel; Resler, Jaroslav; Vrbová, Kateřina; Trush, Arsenii; Michálek, Petr; Beneš, L.; Sühring, M.
2023 - English
We tried to reproduce results measured in the wind tunnel experiment with a CFD simulation provided by numerical model PALM. A realistic buildings layout from the Prague-Dejvice quarter has been chosen as a testing domain because solid validation campaign for PALM simulation of Atmospheric Boundary Layer (ABL) over this quarter was documented in the past. The question of input data needed for such simulation and capability of the model to capture correctly the inlet profile and its turbulence structure provided by the wind-tunnel is discussed in the study The PALM dynamical core contains a solver for the Navier-Stokes equations. By default, the model uses the Large Eddy Simulation (LES) approach in which the bulk of the turbulent motions is explicitly resolved. It is well validated tool for simulations of the complex air-flow within the real urban canopy and also within its reduced scale provided by wind tunnel experiments. However the computed flow field between the testing buildings did not correspond well to the measured wind velocity in some points. Different setting of the inlet boundary condition was tested but none of them gave completely developed turbulent flow generated by vortex generators and castellated barrier wall place at the entrance of the aerodynamic section of the wind tunnel.\n Keywords: large eddy simulation; wind tunnel; atmospheric boundary layer; PALM model; turbulence Fulltext is available at external website.
Different Boundary Conditions For LES Solver PALM 6.0 Used for ABL in Tunnel Experiment

We tried to reproduce results measured in the wind tunnel experiment with a CFD simulation provided by numerical model PALM. A realistic buildings layout from the Prague-Dejvice quarter has been ...

Řezníček, Hynek; Geletič, Jan; Bureš, Martin; Krč, Pavel; Resler, Jaroslav; Vrbová, Kateřina; Trush, Arsenii; Michálek, Petr; Beneš, L.; Sühring, M.
Ústav informatiky, 2023

GA 19-07635S: Outputs and Results
Rehák, Branislav
2023 - English
This manuscript aims to deliver a survey of results obtained during the solution of the project No. GA19-07635S of the Czech Science Foundation. The timespan dedicated to the work on this project was 1.3.2019 - 30.6.2022. The main area dealt with were\nnonlinear multi-agent systems and their synchronization, further, attention was paid to some auxiliary results in the area of nonlinear observers. This Report briefly introduces the Project, provides a summary of the results obtained and also sketches an outline how these results will be applied and extended in future. Keywords: multi-agent systems; nonlinear multi-agent systems; synchronization Fulltext is available at external website.
GA 19-07635S: Outputs and Results

This manuscript aims to deliver a survey of results obtained during the solution of the project No. GA19-07635S of the Czech Science Foundation. The timespan dedicated to the work on this project was ...

Rehák, Branislav
Ústav teorie informace a automatizace, 2023

On the development of a numerical model for the simulation of air flow in the human airways
Lancmanová, Anna; Bodnár, Tomáš; Sequeira, A.
2023 - English
This contribution reports on an ongoing study focusing on reduced order models for incompressible viscous fluid flow in two dimensional channels. A finite difference solver was developed using a simple implementation of the immersed boundary method to represent the channel geometry. The solver was validated for unsteady flow by comparing the obtained two-dimensional numerical solutions with analytical profiles computed from the Womersley solution. Finally the 2D model was coupled to a simple 1D extension simulating the flow in axisymmetric elastic vessel (tube). Some of the coupling principles and implementation issues are discussed in detail. Keywords: reduced order model; incompressible Navier-Stokes equations; finite difference approximation; coupling method Available in digital repository of the ASCR
On the development of a numerical model for the simulation of air flow in the human airways

This contribution reports on an ongoing study focusing on reduced order models for incompressible viscous fluid flow in two dimensional channels. A finite difference solver was developed using a ...

Lancmanová, Anna; Bodnár, Tomáš; Sequeira, A.
Matematický ústav, 2023

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases