Number of found documents: 529
Published from to

Realizace nového optického tenkovrstvého ochranného prvku
Hubička, Zdeněk; Čada, Martin; Olejníček, Jiří; Kšírová, Petra; Tvarog, Drahoslav; Houha, R.; Matulová, L.
2019 - Czech
Byl vyvinut nový ochranný optický prvek s polovodivou tenkou vrstvou, která měla definované elektrické a optické vlastnosti. A new optical protection element was developed with a semiconductor thin film with defined electrical and optical properties.\n Keywords: optical thin film; sputtering; semiconductor; impedance Available at various institutes of the ASCR
Realizace nového optického tenkovrstvého ochranného prvku

Byl vyvinut nový ochranný optický prvek s polovodivou tenkou vrstvou, která měla definované elektrické a optické vlastnosti....

Hubička, Zdeněk; Čada, Martin; Olejníček, Jiří; Kšírová, Petra; Tvarog, Drahoslav; Houha, R.; Matulová, L.
Fyzikální ústav, 2019

Microscopic study of multifunctional drug molecule adhesion to electronic biosensors coated with diamond and gold nanoparticles
Finsterle, T.; Pilarčíková, I.; Bláhová, I.A.; Potocký, Štěpán; Kromka, Alexander; Ukraintsev, Egor; Nepovimová, E.; Musílek, K.; Kuča, K.; Rezek, B.
2019 - English
The easy and fast detection of drug content and concentration levels is demanded in biological research as well as in clinical practice. Here we study on microscopic level how nanodiamonds and gold nanoparticles interact with a multifunctional drug molecule directly on a biosensor surface. The sensors are made of interdigitated Au electrodes coated by 5 nm hydrogenated or oxidized nanodiamonds and further combined with Au colloidal nanoparticles (size 20 nm) providing nanoscale composite (spacing 100 nm). Atomic force microscopy is employed to measure local tip-surface adhesion forces and surface topography. AFM adhesion maps show that the drug binds to all types of nanoparticles and the adhesion is also significantly influenced by the substrates on which the nanoparticles are deposited. Role of local AFM tip interaction with nanostructured surface is also discussed.\n Keywords: alzheimer drugs; biosensors; nanodiamonds; nanoparticles Fulltext is available at external website.
Microscopic study of multifunctional drug molecule adhesion to electronic biosensors coated with diamond and gold nanoparticles

The easy and fast detection of drug content and concentration levels is demanded in biological research as well as in clinical practice. Here we study on microscopic level how nanodiamonds and gold ...

Finsterle, T.; Pilarčíková, I.; Bláhová, I.A.; Potocký, Štěpán; Kromka, Alexander; Ukraintsev, Egor; Nepovimová, E.; Musílek, K.; Kuča, K.; Rezek, B.
Fyzikální ústav, 2019

MOVPE GaN/AlGaN HEMT nano-structures
Hulicius, Eduard; Kuldová, Karla; Hospodková, Alice; Pangrác, Jiří; Dominec, Filip; Humlíček, J.; Pelant, Ivan; Cibulka, Ondřej; Herynková, Kateřina
2019 - English
GaN/AlGaN-based high electron mobility transistors (HEMTs) attain better performance than their state-of-the-art full silicon-based counterparts do, offering higher power, higher frequency as well as higher temperature of operation and stability, although their voltage and current limits are somewhat lower than for the SiC-based HEMTs. GaN/AlGaN-based HEMTs are a potential choice for electric-powered vehicles, for which they are approved not only for their power parameters, but also for their good temperature stability, lifetime and reliability. It is important to optimize HEMT structures and their growth parameters to reach the optimum function for the real-world applications. HEMT structures were grown by MOVPE technology in AIXTRON apparatus on (111)-oriented single-surface polished Si substrates. Structural, optical and transport properties of the structures were measured by X-ray diffraction, optical reflectivity, time-resolved photoluminescence and micro-Raman spectroscopy.\n Keywords: GaN; MOVPE; HEMT Available at various institutes of the ASCR
MOVPE GaN/AlGaN HEMT nano-structures

GaN/AlGaN-based high electron mobility transistors (HEMTs) attain better performance than their state-of-the-art full silicon-based counterparts do, offering higher power, higher frequency as well as ...

Hulicius, Eduard; Kuldová, Karla; Hospodková, Alice; Pangrác, Jiří; Dominec, Filip; Humlíček, J.; Pelant, Ivan; Cibulka, Ondřej; Herynková, Kateřina
Fyzikální ústav, 2019

Topological structures in ferroic materials: Book of Abstracts of the International Workshop TOPO2019
Hlinka, Jiří; Pokorný, Jan; Bubnov, Alexej
2019 - English
This is the Book of Abstracts for the International Workshop on Topological Structures in Ferroic Materials (TOPO2019 conference) held in Pruhonice-Prague on June 16-20, 2019. The special objective of the conference is expressed in the conference title: Topological Structures in Ferroic Materials. The continuous worldwide interest to this conference series is proving that it has a respected position within the series of International conferences covering all interdisciplinary field of the research. The fifth TOPO meeting in Prague 2019 was aiming to bring together the forefront science experts as well as young scientists interested in topological aspects of magnetic, superconducting, ferroelectric as well as liquid crystal matter, and mutually benefit from the beauty of the existing unifying scientific perspective. At the TOPO2019 conference more than 90 participants from 20 countries all over the world presented about 50 lectures.\n Keywords: ferroic materials; topological structures Available at various institutes of the ASCR
Topological structures in ferroic materials: Book of Abstracts of the International Workshop TOPO2019

This is the Book of Abstracts for the International Workshop on Topological Structures in Ferroic Materials (TOPO2019 conference) held in Pruhonice-Prague on June 16-20, 2019. The special objective of ...

Hlinka, Jiří; Pokorný, Jan; Bubnov, Alexej
Fyzikální ústav, 2019

The photoluminescence and optical absorptance of plasma hydrogenated nanocrystalline ZnO thin films
Remeš, Zdeněk; Chang, Yu-Ying; Stuchlík, Jiří; Mičová, J.
2019 - English
We have developed the technology of the deposition of the nominally undoped ZnO nanocrystalline thin films by DC reactive magnetron sputtering of Zn target in the gas mixture of argon and oxygen plasma. We have optimized the photoluminescence spectroscopy for measuring optically scattering thin layers with the high sensitivity, precise sample positioning and very low influence of the scattered excitation light. Here we present the latest results on the enhancement of the photoluminescence of the nanocrystalline ZnO thin films after plasma hydrogenation. The photoluminescence in near UV region has been enhanced whereas the deep defect related photoluminescence has been significantly decreased. We found good room temperature stability of the plasma hydrogenated ZnO nanocrystals in air, but fast degradation at elevated temperature\n Keywords: nanomaterials; ZNO; photoluminescence; magnetron sputtering Available at various institutes of the ASCR
The photoluminescence and optical absorptance of plasma hydrogenated nanocrystalline ZnO thin films

We have developed the technology of the deposition of the nominally undoped ZnO nanocrystalline thin films by DC reactive magnetron sputtering of Zn target in the gas mixture of argon and oxygen ...

Remeš, Zdeněk; Chang, Yu-Ying; Stuchlík, Jiří; Mičová, J.
Fyzikální ústav, 2019

Model of carrier multiplication due to impurity impact ionization in boron-doped diamond
Mortet, Vincent; Lambert, Nicolas; Hubík, Pavel; Soltani, A.
2019 - English
Boron-doped diamond exhibits a characteristic S-shaped I-V curve at room temperature [1] with two electrical conductivity states, i.e., low and high conductivity, at high electric fields (50 – 250 kV.cm-1) due to the carrier freeze-out and impurity impact ionization avalanche effect. To our knowledge, the carrier multiplication during the change of the conductivity state has not been studied. In this article, we investigate theoretically the effect of acceptor concentration and compensation level on the carrier multiplication coefficient at room temperature to determine the optimal dopants concentration of maximum carrier multiplication. The room temperature hole concentration of boron-doped diamond has been calculated for various acceptor concentration and compensation ratio by solving numerically the charge neutrality equation within the Boltzmann approximation of the Fermi-Dirac statistic.\n Keywords: Boron-doped diamond; semiconductor; carrier multiplication coefficient; impurity impact ionization Fulltext is available at external website.
Model of carrier multiplication due to impurity impact ionization in boron-doped diamond

Boron-doped diamond exhibits a characteristic S-shaped I-V curve at room temperature [1] with two electrical conductivity states, i.e., low and high conductivity, at high electric fields (50 – 250 ...

Mortet, Vincent; Lambert, Nicolas; Hubík, Pavel; Soltani, A.
Fyzikální ústav, 2019

Book of Abstracts of the 28th Joint Seminar "Development of Materials Science in Research and Education"
Kožíšek, Zdeněk; Král, Robert; Zemenová, Petra
2018 - English
Topics:\n- Trends in development of materials research \n- Education of materials science at the universities\n- Information about the research programmes of individual institutions \n- Information on equipment for preparation and characterisation of materials \n- Results of materials science research Keywords: material sciences Available at various institutes of the ASCR
Book of Abstracts of the 28th Joint Seminar "Development of Materials Science in Research and Education"

Topics:\n- Trends in development of materials research \n- Education of materials science at the universities\n- Information about the research programmes of individual institutions \n- Information on ...

Kožíšek, Zdeněk; Král, Robert; Zemenová, Petra
Fyzikální ústav, 2018

The hydrogen plasma doping of ZnO thin films and nanoparticles
Remeš, Zdeněk; Neykova, Neda; Potocký, Štěpán; Chang, Yu-Ying; Hsu, H.S.
2018 - English
The optical absorptance and photoluminescence studies has been applied on the hydrogen and oxygen plasma treated, nominally undoped ZnO thin films and aligned nanocolumns grown on the nucleated glass substrate by the hydrothermal process in an oil bath containing a flask with ZnO nutrient solution. The localized defect states at 2.3 eV below the optical absorption edge were detected by photothermal deflection spectroscopy (PDS) in a broad spectral range from near UV to near IR. The optical absorptance spectroscopy shows that hydrogen doping increases free electron concentration changing ZnO to be electrically conductive (hydrogen doping).\n Keywords: ZnO; nanoparticles; hydrothermal growth; hotoluminescence spectroscopy; PDS Available at various institutes of the ASCR
The hydrogen plasma doping of ZnO thin films and nanoparticles

The optical absorptance and photoluminescence studies has been applied on the hydrogen and oxygen plasma treated, nominally undoped ZnO thin films and aligned nanocolumns grown on the nucleated glass ...

Remeš, Zdeněk; Neykova, Neda; Potocký, Štěpán; Chang, Yu-Ying; Hsu, H.S.
Fyzikální ústav, 2018

Influence of Si doping in different layers on luminescence properties of InGaN/GaN multiple quantum well structure
Hájek, František; Hospodková, Alice; Oswald, Jiří; Slavická Zíková, Markéta
2018 - English
Luminescence of InGaN/GaN multiple quantum well (MQW) structure is strongly affected by spontaneous and piezoelectric polarizations. To suppress them, doping with shallow impurities (e. g. Si) can be used. This works presents the effects of Si doping in different layers around the MQW area. On the basis of photoluminescence and cathodoluminescence measurements and band structure simulation, the piezoelectric field is most efficiently reduced when both layers under and over MQW area are Si doped.\n Keywords: nitrides; quantum wells; luminescence; semiconductor doping Fulltext is available at external website.
Influence of Si doping in different layers on luminescence properties of InGaN/GaN multiple quantum well structure

Luminescence of InGaN/GaN multiple quantum well (MQW) structure is strongly affected by spontaneous and piezoelectric polarizations. To suppress them, doping with shallow impurities (e. g. Si) can be ...

Hájek, František; Hospodková, Alice; Oswald, Jiří; Slavická Zíková, Markéta
Fyzikální ústav, 2018

Studium cesno-hafničitého chloridu metodami termické analýzy
Král, Robert; Zemenová, Petra; Bystřický, Aleš; Vaněček, Vojtěch; Kohoutková, M.
2018 - Czech
Tato práce se zabývá studiem procesů probíhajících při tepelném zatížení připraveného chloridu cesno-hafničitého (Cs2HfCl6) a jeho monokrystalu metodami termické analýzy: simultánní diferenciální skenovací kalorimetrií a termogravimetrií (DSC-TG) a termomechanickou analýzou (TMA). Výsledky prokázaly tepelnou nestabilitu Cs2HfCl6 a jeho rozklad na chlorid cesný a hafničitý nad eutektickou teplotou.\n This work deals with the study of processes in cesium hafnium chloride (Cs2HfCl6) and its single crystal under thermal treatment by thermal analyses (different scanning calorimetry, thermogravimetry and thermomechanical analysis). Results showed thermal instability of Cs2HfCl6 and its significant decomposition to cesium and hafnium chloride above the eutectic temperature. Keywords: Cs.sub.2./sub.HfCl.sub.6./sub.; DSC-TG; TMA; krystal Available at various institutes of the ASCR
Studium cesno-hafničitého chloridu metodami termické analýzy

Tato práce se zabývá studiem procesů probíhajících při tepelném zatížení připraveného chloridu cesno-hafničitého (Cs2HfCl6) a jeho monokrystalu metodami termické analýzy: simultánní diferenciální ...

Král, Robert; Zemenová, Petra; Bystřický, Aleš; Vaněček, Vojtěch; Kohoutková, M.
Fyzikální ústav, 2018

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases