Microstructure modifications of Al-Si-coated press-hardened steel 22MnB5 by laser welding
Šebestová, Hana; Horník, Petr; Mika, Filip; Mikmeková, Šárka; Ambrož, Ondřej; Mrňa, Libor
2024 - English
Weld microstructure depends on the characteristics of welded materials and parameters of welding technology, especially on the heat input that determines the peak temperature and the cooling rate. When the coated sheets are welded, the effect of the chemical composition of the coating must be also considered even though its thickness is only a few tens of microns. During 22MnB5+AlSi laser welding experiments, the ferrite-stabilizing elements of coating modified the weld metal microstructure. Ferrite appeared in a quenched weld metal. The rapid cooling rate accompanying welding with a focused beam limited the homogenization of the weld metal which resulted in the formation of ferritic bands in the regions rich in Si and especially in Al. On the other hand, a high level of homogenization was reached when welding with the defocused beam. The ferritic islands uniformly distributed in the weld metal were formed at 0.4 wt% and 1.6 wt% of Si and Al, respectively. The doubled heat input reduced the Al content to 0.7 wt% insufficient for the ferrite formation at still relatively high cooling rates. Predicting the distribution of ferrite in the weld metal is challenging due to its dependence on various factors, such as cooling rate and the volume of dissolved coating, which may vary with any modifications made to the welding parameters.
Keywords:
laser welding; high-strength steel; microstructure; heat input; ferrite stabilization
Available at various institutes of the ASCR
Microstructure modifications of Al-Si-coated press-hardened steel 22MnB5 by laser welding
Weld microstructure depends on the characteristics of welded materials and parameters of welding technology, especially on the heat input that determines the peak temperature and the cooling rate. ...
Influence of ball material on the resulting fatigue life of thermal sprayed HVOF coatings in dynamic impact testing
Duliškovič, J.; Daniel, Josef; Houdková, Š.
2024 - English
Dynamic impact wear, i.e. contact between two components in the presence of high cyclic local loads, is a challenging failure mode that occurs in many mechanical applications. Many previous studies have confirmed that dynamic impact testing is suitable for evaluating the contact fatigue of thermal sprayed coatings. However, the effect of the test parameters on the resulting lifetime is unclear. The aim of this study describes the effect of the ball material used in the dynamic impact test on the resulting fatigue life of the HVOF thermal sprayed coating. Three test balls made of WC/Co alloy, Si3N4 silicon nitride and 440 C steel were chosen for this study. Dynamic impaction testing was carried out on the Cr3C2-NiCr coating, which was sprayed by HVOF on a 1.2376 high-speed steel substrate. The impact lifetime was described by the number of critical impacts, i.e. the number of impacts before coating fatigue occurs. Furthermore, the depth and volume of impact craters were measured. Using scanning electron microscopy (SEM), the surface of the impacts as well as the microstructure of the coating on the cross-section in the region of the impacts were observed. Furthermore, the mechanism of crack propagation in the coating and the microstructure of the indentor were investigated.
Keywords:
dynamic impact test; HVOF; Cr3C2-NiCr; fatigue
Available at various institutes of the ASCR
Influence of ball material on the resulting fatigue life of thermal sprayed HVOF coatings in dynamic impact testing
Dynamic impact wear, i.e. contact between two components in the presence of high cyclic local loads, is a challenging failure mode that occurs in many mechanical applications. Many previous studies ...
Functional Tungsten-based thin films and their characterization
Košelová, Zuzana; Horáková, L.; Sobola, Dinara; Burda, Daniel; Knápek, Alexandr; Fohlerová, Z.
2024 - English
Anodizing is a technique by which thin oxide layers can be formed on a surface. Thin oxide layers have been found to be useful in a variety of applications, including emitters of electrons. Tungsten is still a common choice for cold field emitters in commercial microscopy applications. Its suitable quality can be further improved by thin film deposition. Not only the emission characteristic can be improved, but also the emitter operating time can be extended. Tungsten oxide is known for its excellent resistance to corrosion and chemical attack due to its stable crystal structure and strong chemical bonds between tungsten and oxygen atoms. Many techniques with different advantages and disadvantages have been used for this purpose. Anodization was chosen for this work because of the controllable uniform coverage of the material and its easy availability without the need for expensive complex equipment. The anodizing process involves applying an electrical potential to tungsten while it is immersed in an electrolyte solution. This creates a thin layer of tungsten oxide on the surface of the metal. The thickness and properties of the resulting oxide layer can be controlled by adjusting the anodization conditions, such as the electrolyte solution, voltage, and the duration of the process. In this work, H3PO4 was used as the electrolyte to test whether these tungsten oxide layers would be useful for electron emitters, for use in electron guns and other devices that require high-quality electron emitters. The properties were evaluated using appropriate techniques. In general, anodization of tungsten to form thin layers of tungsten oxide layers is a promising technique for producing high quality electron emitters.
Keywords:
cold-field emission; thin layer deposition; tungsten oxide; resonance enhanced tunneling; anodization
Available at various institutes of the ASCR
Functional Tungsten-based thin films and their characterization
Anodizing is a technique by which thin oxide layers can be formed on a surface. Thin oxide layers have been found to be useful in a variety of applications, including emitters of electrons. Tungsten ...
QUANTUM-MECHANICAL STUDY OF INTERNAL STRUCTURAL TRANSFORMATIONS IN Pb-SUPERSATURATED Pb-Sn ALLOYS
Friák, Martin; Čípek, Petr; Pavlů, J.; Roupcová, Pavla; Miháliková, Ivana; Msallamová, Š.; Michalcová, A.
2024 - English
Motivated by a decades-long controversy related to the crystal structure of Pb-supersaturated solid solutions of Pb in Sn, we have performed a quantum-mechanical study of these materials. Focusing on both body-centred-tetragonal beta-Sn and simple-hexagonal gamma-Sn structures, we have computed properties of two alloys with the chemical composition Pb5Sn11, i.e. 31.25 at. % Pb, which is close to the composition of the experimentally found alloy (30 at. % Pb). The 16-atom computational supercells were designed as multiples of the elemental beta- and gamma-Sn unit cells, where the Pb atoms were distributed according to the special quasi-random structure (SQS) concept. Full structural relaxations of both beta- and gamma-phase-based alloys resulted in very significant re-arrangements into structures which do not exhibit any apparent structural features typical for the original alloys, and are, therefore, difficult to classify. The formation energies of the beta- and gamma-phase-originating equilibrium phases are 50 meV/atom and 53 meV/atom, respectively. Therefore, they are not stable with respect to the decomposition into the elemental lead and tin. Moreover, our calculations of elastic constants of both phases revealed that they are close to mechanical instability. Our results indicate that the studied Pb-supersaturated Pb-Sn solid solutions may be prone to structural instability, transformations into different phases and decomposition. Our findings may contribute into the identification of the reason why the subsequent experimental studies did not reproduce the initial published data.
Keywords:
tin; crystal; Pb-Sn alloys; stability; supersaturation; quantum-mechanical calculations
Available at various institutes of the ASCR
QUANTUM-MECHANICAL STUDY OF INTERNAL STRUCTURAL TRANSFORMATIONS IN Pb-SUPERSATURATED Pb-Sn ALLOYS
Motivated by a decades-long controversy related to the crystal structure of Pb-supersaturated solid solutions of Pb in Sn, we have performed a quantum-mechanical study of these materials. Focusing on ...
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Vacek, Karel; Sváček, P.
2024 - English
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown.
Keywords:
finite element method; arbitrary Lagrangian-Eulerian method; Scott-Vogelius element; Taylor-Hood element
Available in digital repository of the ASCR
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible ...
Využití termografie v průzkumech památek
Valach, Jaroslav; Eisler, Marek
2024 - Czech
Termografie rozšiřuje portfolia metod, jimiž lze studovat vlastnosti objektů okolního světa. Ještě před deseti lety byla tato technologie kvůli potenciálním vojenským aplikacím úzkostlivě kontrolována, což omezovalo konkurenci v nabídce výrobků a výrobců a vedlo k vysokým cenám zařízení založených na těchto principech. Teprve díky uvolnění této kontroly došlo k rozmachu výroby a zpřístupnění zjednodušených výrobků masovému využití, takže si dnes může zákazník například pořídit chytrý telefon s doplňkovým termografickým modulem jen s malým navýšením ceny. Spolu s dostupností zařízení pozorujeme nárůst uplatnění termografie v mnoha oblastech, včetně průzkumů staveb a památek. Thermography expands the portfolio of methods that can be used to study the properties of objects in the surrounding world. As recently as a decade ago, the technology was frowned upon for potential military applications controlled, which limited competition in the offer of products and manufacturers and led to high prices of devices based on these principles. It was only thanks to the release of this control that it happened to expand production and make simplified products available to mass use, so get it today for example, a customer can purchase a smartphone with an additional thermographic module for only with a small price increase. Together with the availability of equipment, we observe an increase in the application of thermography in many areas, including surveys of buildings and monuments.
Keywords:
thermography; survey of historical structures
Available at various institutes of the ASCR
Využití termografie v průzkumech památek
Termografie rozšiřuje portfolia metod, jimiž lze studovat vlastnosti objektů okolního světa. Ještě před deseti lety byla tato technologie kvůli potenciálním vojenským aplikacím úzkostlivě ...
Flow simulations approach for flocculation tanks
Idžakovičová, Kristýna; Bílek, Vojtěch; Haidl, Jan; Isoz, M.; Pivokonský, Martin
2024 - English
Flocculation in water treatment facilities plays a key role in the separation of colloidal inorganic and organic substances. Its optimization leads to a significant increase in its efficiency and savings of operational costs. However, it is currently based on trial-and-error experimental approaches. In this contribution, we focus on flow modeling in stirred flocculation tanks that would, after coupling with a calibrated model of particle aggregation, enable simulationbased flocculation optimization. Despite the abundance of literature on stirred tank modeling, there is no universal agreement on the methodology used to describe turbulence nor on the approach to the computational mesh creation. Consequently, there is no unified methodology for simulations and their validation. To address this, we present a best-practice methodology for economical, yet reliable flow simulations in the said device. This methodology includes the choice of the turbulence model, the approach to the design of a high quality mesh suitable for arbitrary geometries, and results evaluation. It is developed based on an extensive literature review, a multitude of flow simulations using several meshes of progressively higher quality and resolution, and various strategies to converge to steady-state flow conditions. The simulation quality indicators used here involve comparison with the experimental data on fluid velocity, stirrer power output, and flow rate through the impeller zone. Additionally, the resulting flow simulation models are compared using tracer transport simulations, hinting at their potential for coupling with particle aggregation models.
Keywords:
flocculation tank; stirring; MRF; CFD; OpenFOAM
Available in digital repository of the ASCR
Flow simulations approach for flocculation tanks
Flocculation in water treatment facilities plays a key role in the separation of colloidal inorganic and organic substances. Its optimization leads to a significant increase in its efficiency and ...
EFFECT OF STEEL COMPOSITION ON ITS BEHAVIOUR IN THE LIQUID LEAD ENVIRONMENT
Pazderova, M.; Hojná, A.; Vít, J.; Hadraba, Hynek; Čižek, J.
2024 - English
Ferritic-martensitic Eurofer-97 and oxide dispersion strengthened (ODS) Eurofer steels are potential candidates for structural applications in advanced nuclear reactors. Influence of scandium, yttrium, and aluminum addition was studied at 600 degrees C using 10-6 wt.% oxygen concentration. Microstructure and corrosion behaviour was evaluated after 500 h and 1000 h of exposure to liquid lead. Microscopical investigation identified oxidation, solution- based attack, and Pb penetration into the material. Addition of scandium and aluminum changed the mechanism of corrosion attack. Eurofer-97 was partially protected by outer oxide and inner oxidation and Pb penetration was found. In contrast ODS-Eurofer steels after 1000 h of exposure showed mainly inner oxidation and SBA including Pb penetration into the steel. The inner oxidation consisted of Pb+Cr-O and Cr-O+Al-O layers mixture. Degradation of ODS steel was significantly lower than Eurofer-97. It seems that the inner oxidation layer beneath the surface did not prevent the Pb penetration but protected the surface from dissolution.
Keywords:
corrosion behavior; flowing lead; ods steels; pb; Ferritic-martensitic steel; ods; liquid Pb; oxidation; nuclear application
Available at various institutes of the ASCR
EFFECT OF STEEL COMPOSITION ON ITS BEHAVIOUR IN THE LIQUID LEAD ENVIRONMENT
Ferritic-martensitic Eurofer-97 and oxide dispersion strengthened (ODS) Eurofer steels are potential candidates for structural applications in advanced nuclear reactors. Influence of scandium, ...
QUANTUM-COMPUTING STUDY OF THE ELECTRONIC STRUCTURE OF CRYSTALS: THE CASE STUDY OF SI
Ďuriška, Michal; Miháliková, Ivana; Friák, Martin
2024 - English
Quantum computing is newly emerging information-processing technology which is foreseen to be exponentially faster than classical supercomputers. Current quantum processors are nevertheless very limited in their availability and performance and many important software tools for them do not exist yet. Therefore, various systems are studied by simulating the run of quantum computers. Building upon our previous experience with quantum computing of small molecular systems (see I. Mihalikova et al., Molecules 27 (2022) 597, and I. Mihalikova et al., Nanomaterials 2022, 12, 243), we have recently focused on computing electronic structure of periodic crystalline materials. Being inspired by the work of Cerasoli et al. (Phys. Chem. Chem. Phys., 2020, 22, 21816), we have used hybrid variational quantum eigensolver (VQE) algorithm, which combined classical and quantum information processing. Employing tight-binding type of crystal description, we present our results for crystalline diamond-structure silicon. In particular, we focus on the states along the lowest occupied band within the electronic structure of Si and compare the results with values obtained by classical means. While we demonstrate an excellence agreement between classical and quantum-computed results in most of our calculations, we further critically check the sensitivity of our results with respect to computational set-up in our quantum-computing study. A few results were obtained also using quantum processors provided by the IBM.
Keywords:
computation; Quantum computing; crystals; tight-binding method; quantum-mechanical calculations
Available at various institutes of the ASCR
QUANTUM-COMPUTING STUDY OF THE ELECTRONIC STRUCTURE OF CRYSTALS: THE CASE STUDY OF SI
Quantum computing is newly emerging information-processing technology which is foreseen to be exponentially faster than classical supercomputers. Current quantum processors are nevertheless very ...
Galloping of insulated bundled overhead line - nonlinear numerical analysis in time domain
Macháček, Michael; Hračov, Stanislav
2024 - English
Our contribution focuses on a 3D numerical nonlinear analysis of galloping in a specific bundled overhead line with ice accretion. We studied the susceptibility to this self-excited oscillation, critical onset wind speeds, and global dynamic response of a very low-tensioned line with simulated icing observed on similar real conductors. Due to the highly nonlinear mechanical behavior of such a flexible cable, we employed the Newmark integration method combined with the iterative Newton-Raphson method. We analyzed two numerical models of the overhead line loaded by the wind: one assuming nonlinearity only in the wind load, while retaining the linearity of the mechanical system itself, and the other representing a fully nonlinear system including geometrical nonlinearity. Our analysis revealed that the determined critical wind speeds for the onset of galloping are in relatively close ranges for both models. However, numerical simulations with the fully nonlinear system indicated significantly lower amplitudes of limit cycle oscillations, especially at higher wind speeds, compared to the linear model of the line. This underscores the necessity of using fully nonlinear models during the design stage of such low-tensioned aerial conductors.
Keywords:
aerial bundled conductors; wind effects; galloping; limit cycle oscillation
Available in digital repository of the ASCR
Galloping of insulated bundled overhead line - nonlinear numerical analysis in time domain
Our contribution focuses on a 3D numerical nonlinear analysis of galloping in a specific bundled overhead line with ice accretion. We studied the susceptibility to this self-excited oscillation, ...
NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web
Send your suggestions and comments to nusl@techlib.cz
Provider
Other bases