Permutation Flip Processes
Hladký, Jan; Řada, Hanka
2023 - English
We introduce a broad class of stochastic processes on permutations which we call flip processes. A single step in these processes is given by a local change on a randomly chosen fixed-sized tuple of the domain. We use the theory of permutons to describe the typical evolution of any such flip process started from any initial permutation. More specifically, we construct trajectories in the space of permutons with the property that if a finite permutation is close to a permuton then for any time it stays with high probability is close to this predicted trajectory. This view allows to study various questions inspired by dynamical systems.
Keywords:
permutation; permuton; sorting dynamics; flip process
Available in digital repository of the ASCR
Permutation Flip Processes
We introduce a broad class of stochastic processes on permutations which we call flip processes. A single step in these processes is given by a local change on a randomly chosen fixed-sized tuple of ...
Spatio-Spectral EEG Patterns in the Source-Reconstructed Space and Relation to Resting-State Networks: An EEG-fMRI Study
Jiříček, Stanislav; Koudelka, V.; Mantini, D.; Mareček, R.; Hlinka, Jaroslav
2022 - English
In this work, we present and evaluate a novel EEG-fMRI integration approach combining a spatio-spectral decomposition method and a reliable source localization technique. On the large 72 subjects resting- state hdEEG-fMRI data set we tested the stability of the proposed method in terms of both extracted spatio-spectral patterns(SSPs) as well as their correspondence to the BOLD signal. We also compared the proposed method with the spatio-spectral decomposition in the electrode space as well as well-known occipital alpha correlate in terms of the explained variance of BOLD signal. We showed that the proposed method is stable in terms of extracted patterns and where they correlate with the BOLD signal. Furthermore, we show that the proposed method explains a very similar level of the BOLD signal with the other methods and that the BOLD signal in areas of typical BOLD functional networks is explained significantly more than by a chance. Nevertheless, we didn’t observe a significant relation between our source-space SSPs and the BOLD ICs when spatio-temporally comparing them. Finally, we report several the most stable source space EEG-fMRI patterns together with their interpretation and comparison to the electrode space patterns.
Keywords:
EEG-fMRI Integration; EEG-informed fMRI; Spatio-spectral Decomposition; Electrical Source Imaging; Independent Component Analysis; Resting State Networks
Available in digital repository of the ASCR
Spatio-Spectral EEG Patterns in the Source-Reconstructed Space and Relation to Resting-State Networks: An EEG-fMRI Study
In this work, we present and evaluate a novel EEG-fMRI integration approach combining a spatio-spectral decomposition method and a reliable source localization technique. On the large 72 subjects ...
Czech Gathering of Logicians 2022. Book of Abstracts
Haniková, Zuzana; Švejdar, V.; Wannenburg, Johann Joubert
2022 - English
Fulltext is available at external website.
Czech Gathering of Logicians 2022. Book of Abstracts
A Bootstrap Comparison of Robust Regression Estimators
Kalina, Jan; Janáček, Patrik
2022 - English
The ordinary least squares estimator in linear regression is well known to be highly vulnerable to the presence of outliers in the data and available robust statistical estimators represent more preferable alternatives. It has been repeatedly recommended to use the least squares together with a robust estimator, where the latter is understood as a diagnostic tool for the former. In other words, only if the robust estimator yields a very different result, the user should investigate the dataset closer and search for explanations. For this purpose, a hypothesis test of equality of the means of two alternative linear regression estimators is proposed here based on nonparametric bootstrap. The performance of the test is presented on three real economic datasets with small samples. Robust estimates turn out not to be significantly different from non-robust estimates in the selected datasets. Still, robust estimation is beneficial in these datasets and the experiments illustrate one of possible ways of exploiting the bootstrap methodology in regression modeling. The bootstrap test could be easily extended to nonlinear regression models.
Keywords:
linear regression; robust estimation; nonparametric bootstrap; bootstrap hypothesis testing
Fulltext is available at external website.
A Bootstrap Comparison of Robust Regression Estimators
The ordinary least squares estimator in linear regression is well known to be highly vulnerable to the presence of outliers in the data and available robust statistical estimators represent more ...
Large Perimeter Objects Surrounded by a 1.5D Terrain
Keikha, Vahideh
2022 - English
Given is a 1.5D terrain T , i.e., an x-monotone polygonal chain in R2. Our objective is to approximate the largest area or perimeter convex polygon with at most k vertices inside T . For a constant k > 0, we design an FPTAS that efficiently approximates such polygons within a factor (1 − ǫ). For the special case of the´largest-perimeter contained triangle in T , we design an O(n log n) time exact algorithm that matches the same result for the area measure.
Available in digital repository of the ASCR
Large Perimeter Objects Surrounded by a 1.5D Terrain
Given is a 1.5D terrain T , i.e., an x-monotone polygonal chain in R2. Our objective is to approximate the largest area or perimeter convex polygon with at most k vertices inside T . For a constant k ...
Recent Trends in Machine Learning with a Focus on Applications in Finance
Kalina, Jan; Neoral, Aleš
2022 - English
Machine learning methods penetrate to applications in the analysis of financial data, particularly to supervised learning tasks including regression or classification. Other approaches, such as reinforcement learning or automated machine learning, are not so well known in the context of finance yet. In this paper, we discuss the advantages of an automated data analysis, which is beneficial especially if a larger number of datasets should be analyzed under a time pressure. Important types of learning include reinforcement learning, automated machine learning, or metalearning. This paper overviews their principles and recalls some of their inspiring applications. We include a discussion of the importance of the concept of information and of the search for the most relevant information in the field of mathematical finance. We come to the conclusion that a statistical interpretation of the results of theautomatic machine learning remains crucial for a proper understanding of the knowledge acquired by the analysis of the given (financial) data.
Keywords:
statistical learning; automated machine learning; metalearning; financial data analysis; stock market investing
Fulltext is available at external website.
Recent Trends in Machine Learning with a Focus on Applications in Finance
Machine learning methods penetrate to applications in the analysis of financial data, particularly to supervised learning tasks including regression or classification. Other approaches, such as ...
The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
Kalina, Jan
2021 - English
The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available prognoses as well as from the presented opinion polls. We perform regression modeling for explaining the election results by means of three demographic predictors for individual 50 states: weekly attendance at religious services, percentage of Afroamerican population, and population density. We compare the performance of beta regression with linear regression, while beta regression performs only slightly better in terms of predicting the response. Because the United States population is very heterogeneous and the regression models are heteroscedastic, we focus on regression quantiles in the linear regression model. Particularly, we develop an original quintile regression map, such graphical visualization allows to perform an interesting interpretation of the effect of the demographic predictors on the election outcome on the level of individual states.
Keywords:
elections results; electoral demography; quantile regression; heteroscedasticity; outliers
Fulltext is available at external website.
The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available ...
Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election
Kalina, Jan; Vidnerová, Petra
2021 - English
Regression quantiles can be characterized as popular tools for a complex modeling of a continuous response variable conditioning on one or more given independent variables. Because they are however vulnerable to leverage points in the regression model, an alternative approach denoted as implicitly weighted regression quantiles have been proposed. The aim of current work is to apply them to the results of the second round of the 2018 presidential election in the Czech Republic. The election results are modeled as a response of 4 demographic or economic predictors over the 77 Czech counties. The analysis represents the first application of the implicitly weighted regression quantiles to data with more than one regressor. The results reveal the implicitly weighted regression quantiles to be indeed more robust with respect to leverage points compared to standard regression quantiles. If however the model does not contain leverage points, both versions of the regression quantiles yield very similar results. Thus, the election dataset serves here as an illustration of the usefulness of the implicitly weighted regression quantiles.
Keywords:
linear regression; quantile regression; robustness; outliers; elections results
Fulltext is available at external website.
Application Of Implicitly Weighted Regression Quantiles: Analysis Of The 2018 Czech Presidential Election
Regression quantiles can be characterized as popular tools for a complex modeling of a continuous response variable conditioning on one or more given independent variables. Because they are however ...
Nearly All Reals Can Be Sorted with Linear Time Complexity
Jiřina, Marcel
2021 - English
We propose a variant of the counting sort modified for sorting reals in a linear time. It is assumed that the sorting key and pointers to the items being sorted are moved and individual items remain at the same place in the memory (in place sorting). In this case, the space complexity of the new variant of the algorithm is the same as the complexity of the quicksort. We also quantify the practical limits for possible sorting reals in a linear time. This possibility is assured under additional assumptions on the distribution of the sorting key, mainly the independence and identity of the distribution. Here we give a more general criteria easily applicable in practice. We also show that the algorithm is applicable for data that do not fulfill criteria for linear time complexity but even that the computation is faster than the system quicksort. A new, faster version of the algorithm is attached.
Keywords:
sorting; algorithm; real sorting key; time complexity; linear complexity
Available in digital repository of the ASCR
Nearly All Reals Can Be Sorted with Linear Time Complexity
We propose a variant of the counting sort modified for sorting reals in a linear time. It is assumed that the sorting key and pointers to the items being sorted are moved and individual items remain ...
Multifractal approaches in econometrics and fractal-inspired robust regression
Kalina, Jan
2021 - English
While the mainstream economic theory is based on the concept of general economic equilibrium, the economies throughout the world have recently been facing serious transformations and challenges. Thus, instead of a convergence to equilibrium, the economies can be regarded as unstable, turbulent or chaotic with properties characteristic for fractal or multifractal processes. This paper starts with a discussion of recent data analysis tools inspired by fractal or multifractal concepts. We pay special attention to available data analysis tools based on reciprocal weights assigned to individual observations - these are inspired by an assumed fractal structure of multivariate data. As an extension, we consider here a novel version of the least weighted squares estimator of parameters for the linear regression model, which exploits reciprocal weights. Finally, we perform a statistical analysis of 31 datasets with economic motivation and compare the performance of the least weighted squares estimator with various weights. It turns out that the reciprocal weights, inspired by the fractal theory, are not superior to other choices of weights. In fact, the best prediction results are obtained with trimmed linear weights.
Keywords:
chaos in economics; fractal market hypothesis; reciprocal weights; robust regression; prediction
Available in digital repository of the ASCR
Multifractal approaches in econometrics and fractal-inspired robust regression
While the mainstream economic theory is based on the concept of general economic equilibrium, the economies throughout the world have recently been facing serious transformations and challenges. Thus, ...
NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web
Send your suggestions and comments to nusl@techlib.cz
Provider
Other bases