Number of found documents: 583
Published from to

Conductive open-cell silicone foam for modulatable damping and impact sensing applications
Preuer, R.; Šleichrt, Jan; Kytýř, Daniel; Graz, I.
2023 - English
Nature has long served as a source of inspiration for the development of new materials, with foam-like structures in fruits such as oranges and pamelos serving as examples of efficient energy dissipation. In this study, we present the synthesis and characterization of a conductive silicone foam for potential impact sensing applications. By blending Sylgard 184 and Carbon Black, we create a highly porous structure capable of dissipating energy and modulating its resistance. To investigate the properties of the foam, we utilized both micro-computer tomography (μCT) and scanning electron microscopy (SEM) imaging techniques. The μCT imaging revealed the intricate pore network of the foam, reminiscent of the complex structure found in natural sponges. SEM imaging allowed for observation of the uniform distribution of Carbon Black particles within the foam, enabling the conductive properties of the foam. The foam’s mechanical behavior was characterized by a compression test under μCT imaging to measure the deformation behavior and changes in the foam’s resistance. Additionally, a ball drop test was conducted to investigate the foam’s damping behavior while simultaneously measuring the impact location by the local change in resistance. Remarkably, our results demonstrate the exceptional damping capabilities of the conductive silicone foam, with the damping ratio modulated by adjusting the degree of compression-induced deformation. This is attributed to the collapse of the foam’s porous structure, resulting in a significant increase in the foam’s contact area. Overall, our study provides valuable insights into the behavior of conductive silicone foams and their potential as an impact sensing material. The use of both CT and SEM imaging techniques allows for a comprehensive understanding of the foam’s properties, which can be optimized for a variety of applications. The foam’s ability to modulate its damping properties by adjusting the degree of deformation provides a promising avenue for future research in the field of materials science and engineering. Keywords: silicone foam; conductive properties; deformation behaviour; damping Available at various institutes of the ASCR
Conductive open-cell silicone foam for modulatable damping and impact sensing applications

Nature has long served as a source of inspiration for the development of new materials, with foam-like structures in fruits such as oranges and pamelos serving as examples of efficient energy ...

Preuer, R.; Šleichrt, Jan; Kytýř, Daniel; Graz, I.
Ústav teoretické a aplikované mechaniky, 2023

Characterization of five mosaic mortar beds from Austria produced by A. Neuhauser/Tiroler Glasmalerei and J. Pfefferle
Bauerová, Pavla; Frankeová, Dita; Slížková, Zuzana
2023 - English
The report contains the results of material analyses of five mortar beds of mosaics produced by the Austrian studios Neuhauser/Tiroler Glasmalerei and Josef Pfefferle. The analysed samples come from mosaics made at the turn of the 19th and 20th centuries and located in various places in Tyrol. The mortars were analysed by SEM-EDS and thermal analysis. The results showed that, in addition to traditional materials such as marble dust, they also contain atypical or innovative components such as waste ceramic and glass shards or early Portland cement. Keywords: SEM-EDS analysis; historic mortar; mosaic; thermal analysis Available at various institutes of the ASCR
Characterization of five mosaic mortar beds from Austria produced by A. Neuhauser/Tiroler Glasmalerei and J. Pfefferle

The report contains the results of material analyses of five mortar beds of mosaics produced by the Austrian studios Neuhauser/Tiroler Glasmalerei and Josef Pfefferle. The analysed samples come from ...

Bauerová, Pavla; Frankeová, Dita; Slížková, Zuzana
Ústav teoretické a aplikované mechaniky, 2023

The effect of the backfill on the integrity of a buried pipeline upon heavy-duty vehicle crossings
Gajdoš, Lubomír; Šperl, Martin; Slížková, Zuzana; Drdlová, M.
2023 - English
The aim of this work was to determine stresses in the wall of a buried empty gas pipeline caused by the weight of backfill as well as by heavy-duty vehicles crossing the pipeline, and, on their basis to assess the applicability of protective sleeves. A buried pipeline with zero internal pressure of transported medium (empty pipeline) differs from an unburied pipeline by the vertical load due to the weight of the backfill which causes an ovalness of the circular cross section of the pipeline. This leads to the rise of through-wall bending stresses with the tensile stress at the outside surface at the 3 and 9 o´clock positions and compressive stress at the inside surface. At the 6 and 12 o´clock positions the stresses are tensile at the inside surface and compressive at the outside surface. The current depth of soil cover above gas pipelines is 0.5 m. For pipes DN500, t ~ 6.5 mm the through-wall bending stress is found to be σb ≈ ±10 MPa. In comparison with the yield stress of pipeline material, this stress is negligible. The situation is changed when heavy-duty vehicles cross the pipeline. For example, when a MAN truck with the mass load 3270 kg acting on a single wheel of the front axle crosses this pipeline, the pressure transmitted to the pipe will cause the through-wall bending stress σb ≈ ±76 MPa. This stress is superimposed to that of the backfill to give the total value ±86 MPa. When dead loads, imposed by backfill cover, together with live loads, caused by truck-wheel loads, are excessive a crushing of side walls of the pipeline and/or ring buckling of the pipe cross section can happen. Keywords: gas pipeline; pressure; buried pipeline Available at various institutes of the ASCR
The effect of the backfill on the integrity of a buried pipeline upon heavy-duty vehicle crossings

The aim of this work was to determine stresses in the wall of a buried empty gas pipeline caused by the weight of backfill as well as by heavy-duty vehicles crossing the pipeline, and, on their basis ...

Gajdoš, Lubomír; Šperl, Martin; Slížková, Zuzana; Drdlová, M.
Ústav teoretické a aplikované mechaniky, 2023

Experimental evaluation of aluminothermic welds
Zeman, L.; Valach, J.; Zlámal, P.; Krčmářová, N.; Koudelková, Veronika; Zeman, J.
2023 - English
The article presents a study of the mechanical processes occurring during the aluminother-mic reaction using experimental methods (strain gauges, digital image correlation, thermography,scanning electron microscopy, profilometry). The aluminothermic reaction is a highly efficient weldingmethod due to its exothermic behaviour, however, it places considerable demands not only on thewelding technique, but also on the capabilities of the experimental methods used - these limitationsare also discussed in the article. The aluminothermic reaction is associated with the formation of alocalised heat source with a time evolution dictated by the technological procedure, which manifestsitself in heat propagation to the surrounding weld material. The unequal evolution of the temperaturefield is the fundamental cause of the appearance of the heat affected zone or local deformations orsurface curvature, which was the focus of the experimental methods deployed above and the results ofwhich are shown in the article. Keywords: aluminothermic reaction; train gauges; hardness; profilometry; scanning electron microscope Available at various institutes of the ASCR
Experimental evaluation of aluminothermic welds

The article presents a study of the mechanical processes occurring during the aluminother-mic reaction using experimental methods (strain gauges, digital image correlation, thermography,scanning ...

Zeman, L.; Valach, J.; Zlámal, P.; Krčmářová, N.; Koudelková, Veronika; Zeman, J.
Ústav teoretické a aplikované mechaniky, 2023

Fast continuous in-situ XCT of additively manufactured carbon fiber reinforced tensile test specimens
Glinz, J.; Maurer, J.; Holzleitner, M.; Pace, F.; Stamopoulos, A.; Vopálenský, Michal; Kumpová, Ivana; Eckl, M.; Kastner, J.; Senck, S.
2023 - English
The reinforcement of fused filament fabricated (FFF) components with continuous fibers allows for high versatility in the design of mechanical properties for a specific application’s needs. However, the bonding quality between continuous fibers and the FFF matrix material has high impact on the overall performance of the composite. In a recent study [1], additively manufactured (AM) continuous fiber reinforced tensile test specimens have been investigated regarding the effect of amount and material of the embedded continuous fibers on tensile strength and AM build quality. During these tensile tests, a sudden reduction in tensile stress, which most likely was not related to actual rupture of continuous fibers, was noticeable. Since X-ray computed tomography (XCT) scans were performed only prior to and after the tensile testing, a detailed investigation on the origin of these drops in tensile stress was not possible. Within this work, we will expand upon these findings and present results of fast on-the-fly in-situ investigations performed on continuous carbon fiber reinforced specimens of the same AM build. During these investigations, specimens are loaded under the same conditions while fast XCT scans, with a total scan time of 12 seconds each, were performed consecutively. The resulting three-dimensional image data reveals internal meso- and macro-structural changes over time/strain to find the cause of the aforementioned reduction in tensile stress. Keywords: additive manufacturing; composites; X-ray computed tomography; in-situ tensile testing Available at various institutes of the ASCR
Fast continuous in-situ XCT of additively manufactured carbon fiber reinforced tensile test specimens

The reinforcement of fused filament fabricated (FFF) components with continuous fibers allows for high versatility in the design of mechanical properties for a specific application’s needs. However, ...

Glinz, J.; Maurer, J.; Holzleitner, M.; Pace, F.; Stamopoulos, A.; Vopálenský, Michal; Kumpová, Ivana; Eckl, M.; Kastner, J.; Senck, S.
Ústav teoretické a aplikované mechaniky, 2023

Acta Polytechnica CTU Proceedings. Vol. 42 (2023)
Kytýř, Daniel; Doktor, T.; Zlámal, Petr
2023 - English
The YSESM symposium provides a forum for young researchers and engineers, PhD students and students dealing with subjects of experimental mechanics. The Symposium concentrates on current work in all areas of experimental research and its application in solid and fluid mechanics. The topic will particularly concern to: Conventional and Advanced Experimental Methods in Solid and Fluid Mechanics, Non-Destructive Testing and Inspection, Measurements in Material Science, Computer Assisted Testing and Simulation, Engineering Design Simulation, Hybrid Methods, Experimental Techniques – Numerical Simulation, Optical Methods and Image Processing, Measurements in Biomechanics, Sensor Techniques for Micro- and Nano-Applications, Measurement Methods for Forensic Engineering. Keywords: experimental mechanics; fluid mechanics; mechanics of solids Available at various institutes of the ASCR
Acta Polytechnica CTU Proceedings. Vol. 42 (2023)

The YSESM symposium provides a forum for young researchers and engineers, PhD students and students dealing with subjects of experimental mechanics. The Symposium concentrates on current work in all ...

Kytýř, Daniel; Doktor, T.; Zlámal, Petr
Ústav teoretické a aplikované mechaniky, 2023

Analyzing stochastic stability of a gyroscope through the stochastic Lyapunov function
Náprstek, Jiří; Fischer, Cyril
2023 - English
The text delves into the application of first integrals in the construction of Lyapunov functions for analyzing the stability of dynamic systems in stochastic domains. It emphasizes the distinct characteristics of first integrals that warrant the introduction of additional constraints to ensure the essential properties required for a Lyapunov function. These constraints possess physical interpretations associated with system stability. The general approach to testing stochastic stability is illustrated using the example of a 3-degrees-of-freedom system representing a gyroscope. Keywords: stochastic stability; Lyapunov function; first integral; gyroscope Available at various institutes of the ASCR
Analyzing stochastic stability of a gyroscope through the stochastic Lyapunov function

The text delves into the application of first integrals in the construction of Lyapunov functions for analyzing the stability of dynamic systems in stochastic domains. It emphasizes the distinct ...

Náprstek, Jiří; Fischer, Cyril
Ústav teoretické a aplikované mechaniky, 2023

Conservation standards for archaeological sites
Drdácký, Miloš; Drdácký, Tomáš; Novotný, Jakub; Přechová, Barbora
2022 - English
The report provides a set of principles for the preventive protection, conservation and management of archaeological sites exposed to the threats of global hazards, especially natural disasters and long-term weather effects.\n\n Keywords: conservation; archaeological sites; Danube limes monument; natural hazards; preventive measures Available at various institutes of the ASCR
Conservation standards for archaeological sites

The report provides a set of principles for the preventive protection, conservation and management of archaeological sites exposed to the threats of global hazards, especially natural disasters and ...

Drdácký, Miloš; Drdácký, Tomáš; Novotný, Jakub; Přechová, Barbora
Ústav teoretické a aplikované mechaniky, 2022

Long term optical monitoring technique of displacement fields based on ArUco markers
Kunecký, Jiří
2022 - English
In structural engineering it is often needed to measure tiny displacements of parts of the structure extremely precisely. For such a purpose it is often needed to use some type of sensor attached to the surface of the structure. This paper presents a new technique which simply uses computer vision libraries to measure displacement of markers originally developed for robotics. Such analysis can be under specific circumstances (2D planar movement) valid if we compare two images taken at different times with the same camera. Main advantage of this method is simplicity of use and low cost of markers, which can be printed in a standard office laser printer. The resolution (error) can be for standard cameras around 0.1 pixel. The method is especially developed for research of timber frames/joints behavior in real structures, because displacements of joints in creep or under load can reach an amplitude which is perfectly detectable by this method. Keywords: displacement measurement; long-term monitoring; ArUco markers Available at various institutes of the ASCR
Long term optical monitoring technique of displacement fields based on ArUco markers

In structural engineering it is often needed to measure tiny displacements of parts of the structure extremely precisely. For such a purpose it is often needed to use some type of sensor attached to ...

Kunecký, Jiří
Ústav teoretické a aplikované mechaniky, 2022

Analysis of van der Pol equation on slow time scale for combined random and harmonic excitation
Náprstek, Jiří; Fischer, Cyril
2022 - English
Vortex shedding represents one of the most important processes that constantly attract the attention of experimental and theoretical research. A number of non-linear effects arise from the fluid-structure interaction. The non-stationary response in the vicinity of the lock-in region has a quasi-periodic character, beating frequency of which varies considerably with the distance from the lock-in frequency. This property is significantly affected by the assumption of combined random and harmonic excitation. This paper describes several details that contribute to the probabilistic characteristics of the system on a time-slow scale using partial response amplitudes. Keywords: SDOF oscillator; slow-time system; Fokker-Planck equation Available at various institutes of the ASCR
Analysis of van der Pol equation on slow time scale for combined random and harmonic excitation

Vortex shedding represents one of the most important processes that constantly attract the attention of experimental and theoretical research. A number of non-linear effects arise from the ...

Náprstek, Jiří; Fischer, Cyril
Ústav teoretické a aplikované mechaniky, 2022

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases