Number of found documents: 1814
Published from to

Dynamics of Machines and Mechanical Systems with Interactions, DYMAMESI 2023
Zolotarev, Igor; Pešek, Luděk; Kozień, M. S.
2023 - English
The aim of the DYMAMESI is to facilitate the exchange of up to date information and knowledge among specialists in structural and multibody dynamics, in coupled interacting systems as aero-elasticity, hydro-elasticity, biomechanics, systems with feedbacks and mechatronics. The colloquium DYMAMESI 2021 is cofunded by the Strategy AV21 initiative of the Czech Academy of Sciences of the Czech Republic, and in 2021 will be hosted by Cracow University of Technology, Institute of Applied Mechanics, Section of Dynamics of Systems. Keywords: dynamics; vibrations of mechanical systems; vibrodiagnostics; energy transformations Available at various institutes of the ASCR
Dynamics of Machines and Mechanical Systems with Interactions, DYMAMESI 2023

The aim of the DYMAMESI is to facilitate the exchange of up to date information and knowledge among specialists in structural and multibody dynamics, in coupled interacting systems as aero-elasticity, ...

Zolotarev, Igor; Pešek, Luděk; Kozień, M. S.
Ústav termomechaniky, 2023

Simulating particle-laden flows: from immersed boundaries towards model order reduction
Isoz, Martin; Kubíčková, Lucie; Kotouč Šourek, M.; Studeník, Ondřej; Kovárnová, A.
2023 - English
Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-port of riverbed sediments towards the magma flow, from the deposition of catalytic material inside particulate matter filters in automotive exhaust gas aftertreatment towards the slurry transport in dredging operations. In this contribution, we focus on the particle-resolved direct numerical simulation (PR-DNS) of the particle-laden flow. Such a simulation combines the standard Eulerian approach to computational fluid dynamics (CFD) with inclusion of particles via a variant of the immersed boundary method (IBM) and tracking of the particles movement using a discrete element method (DEM). Provided the used DEM allows for collisions of arbitrarily shaped particles, PR-DNS is based (almost) entirely on first principles, and as such it is a truly high-fidelity model. The downside of PR-DNS is its immense computational cost. In this work, we focus on three possibilities of alleviating the computational cost of PR-DNS: (i) replacing PR-DNS by PR-LES or PR-RANS, while the latter requires combining IBM with wall functions, (ii) improving efficiency of DEM contact solution via adaptively refined virtual mesh, and (iii) developing a method of model order reduction specifically tailored to PR-DNS of particle-laden flows. Keywords: particle-laden flow; CFD-DEM; arbitrarily-shaped particles; finite volume method Fulltext is available at external website.
Simulating particle-laden flows: from immersed boundaries towards model order reduction

Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-port of riverbed sediments towards the magma flow, from the deposition of catalytic material ...

Isoz, Martin; Kubíčková, Lucie; Kotouč Šourek, M.; Studeník, Ondřej; Kovárnová, A.
Ústav termomechaniky, 2023

On Reynolds-averaged turbulence modeling with immersed boundary method
Kubíčková, Lucie; Isoz, Martin
2023 - English
The immersed boundary (IB) method is an approach in the computational fluid dynamics in which complex geometry conforming meshes are replaced by simple ones and the true simulated geometry is projected onto the simple mesh by a scalar field and adjustment of governing equations. Such an approach is particularly advantageous in topology optimizations (TO) where it allows for substantial speed-up since a single mesh can be used for all the tested topologies. In our previous work, we linked our custom IB variant, the hybrid fictitious domain-immersed boundary method (HFDIB), with a TO framework and successfully carried out an optimization under laminar flow conditions. However, to allow for optimizations of reallife components, the IB approach needs to be coupled with an affordable turbulence modeling. In this contribution, we focus on extending the HFDIB approach by the possibility to perform Reynolds-averaged simulations (RAS). In particular, we implemented the k − ω turbulence model and wall functions for closure variables and velocity. Keywords: immersed boundary; RAS; wall functions; CFD; OpenFOAM Fulltext is available at external website.
On Reynolds-averaged turbulence modeling with immersed boundary method

The immersed boundary (IB) method is an approach in the computational fluid dynamics in which complex geometry conforming meshes are replaced by simple ones and the true simulated geometry is ...

Kubíčková, Lucie; Isoz, Martin
Ústav termomechaniky, 2023

Finite element modal analysis of a silicone vocal fold filled with fluid
Hájek, P.; Radolf, Vojtěch; Horáček, Jaromír; Švec, J. G.
2023 - English
A three dimensional (3D) finite element (FE) model of a silicone vocal fold (VF) filled with fluid is presented here. The silicone part of the model is based on partial differential equations of the continuum mechanics and consider large deformations. The fluid domain encapsulated in the silicone VF is defined semianalytically as a lumped-element model describing the fluid in hydrostatic conditions. The elongated and pressurized silicone VF was subjected to perturbed modal analysis. Results showed that the choice of the fluid inside the VF substantially influences the natural frequencies. Namely, the water-filling lowers the natural frequencies approximately by half over the air-filling. Besides, the procedure of reverse engineering for obtaining the geometry of the VF from already 3D-printed mold is introduced. Keywords: perturbed modal analysis; finite element method; vocal folds; reverse engineering; biomechanics of voice Fulltext is available at external website.
Finite element modal analysis of a silicone vocal fold filled with fluid

A three dimensional (3D) finite element (FE) model of a silicone vocal fold (VF) filled with fluid is presented here. The silicone part of the model is based on partial differential equations of the ...

Hájek, P.; Radolf, Vojtěch; Horáček, Jaromír; Švec, J. G.
Ústav termomechaniky, 2023

Measurements on KR-D-11B Optimized Subsonic Blade Cascade
Šimurda, David; Hála, Jindřich
2023 - English
This report contains results and evaluation of aerodynamic measurements conducted on a subsonic compressor blade cascade. Keywords: compressor blade cascade; experiment; subsonic flow; optimized profile Available at various institutes of the ASCR
Measurements on KR-D-11B Optimized Subsonic Blade Cascade

This report contains results and evaluation of aerodynamic measurements conducted on a subsonic compressor blade cascade.

Šimurda, David; Hála, Jindřich
Ústav termomechaniky, 2023

Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids
Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
2023 - English
The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An established approach providing such models is based using a variant of an immersed boundary method to couple the computational fluid dynamics (CFD) and discrete element method (DEM). In the talk, we will present our custom and monolithic implementation of a fully-resolved CFDDEM solver and concentrate on the intricacies of solving contact between two arbitrarily-shaped solids. We shall propose an efficient contact treatment based on the concept of a virtual mesh, which provides the mesh resolution required by DEM through dividing the space around the contact point in a finite volume fashion without any changes to the CFD mesh itself. A substantial part of the talk will devoted to the parallelization of the contact solution, especially in the context of the domain decomposition method imposed by the CFD solver. Keywords: CFD; DEM; virtual mesh Fulltext is available at external website.
Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids

The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An ...

Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
Ústav termomechaniky, 2023

Souvislost mezi principem nejmenší akce a termodynamickou podmínkou stability
Maršík, František; Trávníček, Zdeněk; Antošová, Zuzana
2023 - English
The extended principle is formulated for a material point (M.P.) X, which has nonzero mass, temperature, and trajectory x(X,t). The Lagrangian of this variation principle is equal to the kinetic energy from which, the internal energy of the material point (which depends on the entropy) and the additional energy caused by the frictional force are subtracted. The relation between the inertial force and the entropy gradient is found and the gravitational force is completely replaced by the entropy gradient. Thanks to the mentioned properties of the total enthalpy, the Thermodynamic criterion of stability of the state of M.P., is formulated. Keywords: principle of the least action; thermodynamic stability condition; annular swirl flow Fulltext is available at external website.
Souvislost mezi principem nejmenší akce a termodynamickou podmínkou stability

The extended principle is formulated for a material point (M.P.) X, which has nonzero mass, temperature, and trajectory x(X,t). The Lagrangian of this variation principle is equal to the kinetic ...

Maršík, František; Trávníček, Zdeněk; Antošová, Zuzana
Ústav termomechaniky, 2023

Annular Impinging Jets and an Active Control of Hysteretic Effects
Devani, Yogendrasasidhar; Antošová, Zuzana; Trávníček, Zdeněk
2023 - English
An annular impinging air jet with and without flow control was studied experimentally using measurements of the wall pressure and flow velocity by the Pitot probe. To investigate flow control swirling effects, eight synthetic jets were generated from the nozzle center body. The experiments cover Reynolds numbers 4000–10,000 (evaluated from the outer exit diameter of the annular nozzle). For Re<9000, the bistability and hysteresis were identified and two different flow field patterns (A, B) were found under the same boundary conditions. For higher Re>9000, the hysteresis were not found. Keywords: annular jet; impinging jet; hysteresis Available at various institutes of the ASCR
Annular Impinging Jets and an Active Control of Hysteretic Effects

An annular impinging air jet with and without flow control was studied experimentally using measurements of the wall pressure and flow velocity by the Pitot probe. To investigate flow control swirling ...

Devani, Yogendrasasidhar; Antošová, Zuzana; Trávníček, Zdeněk
Ústav termomechaniky, 2023

A new blade cascade for flutter studies
Šnábl, Pavel; Pešek, Luděk; Procházka, Pavel P.; Skála, V.
2023 - English
In this paper, a new blade cascade, developed in the Institute of Thermomechanics, is presented. The geometry of the cascade was modified so now the stall flutter can occur. It has some major construction improvements over the original cascade which now allow more precise and reliable measurements. The stability of the new blade cascade with five NACA 0010 profiles with rotational degree of freedom is assessed by Travelling Wave Mode approach and Aerodynamic Influence Coefficient approach. Keywords: blade cascade; stability; travelling wave mode; aerodynamic influence coefficient Available at various institutes of the ASCR
A new blade cascade for flutter studies

In this paper, a new blade cascade, developed in the Institute of Thermomechanics, is presented. The geometry of the cascade was modified so now the stall flutter can occur. It has some major ...

Šnábl, Pavel; Pešek, Luděk; Procházka, Pavel P.; Skála, V.
Ústav termomechaniky, 2023

Numerical implementation of incremental minimization principle for materials with multiple rate-independent dissipative mechanisms
Frost, Miroslav; Moskovka, Alexej; Sedlák, Petr; Valdman, Jan
2023 - English
The incremental energy minimization approach is a compact variational formulation of the evolutionary boundary value problem for constitutive models of materials with a rate-independent response. Although it can be easily applied to many conventional models, its main advantages arise when applied to models with multiple strongly coupled dissipation mechanisms, where the direct construction of the coupled yield conditions and flow rules may be challenging. However, this usually requires a more complex numerical treatment of the resulting sequence of time-incremental boundary value problems resolved via the finite element method. This contribution presents, compares and discusses two genuine minimization approaches - the staggered solution procedure relying on alternating minimization and the monolithic approach employing global minimization - for an advanced constitutive model of shape memory alloys. Keywords: variational approach; constitutive modeling; numerical implementation Fulltext is available at external website.
Numerical implementation of incremental minimization principle for materials with multiple rate-independent dissipative mechanisms

The incremental energy minimization approach is a compact variational formulation of the evolutionary boundary value problem for constitutive models of materials with a rate-independent response. ...

Frost, Miroslav; Moskovka, Alexej; Sedlák, Petr; Valdman, Jan
Ústav termomechaniky, 2023

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases