Number of found documents: 1598
Published from to

The scalar-valued score functions of continuous probability distribution
Fabián, Zdeněk
2019 - English
In this report we give theoretical basis of probability theory of continuous random variables based on scalar valued score functions. We maintain consistently the following point of view: It is not the observed value, which is to be used in probabilistic and statistical considerations, but its 'treated form', the value of the scalar-valued score function of distribution of the assumed model. Actually, the opinion that an observed value of random variable should be 'treated' with respect to underlying model is one of main ideas of the inference based on likelihood in classical statistics. However, a vector nature of Fisher score functions of classical statistics does not enable a consistent use of this point of view. Instead, various inference functions are suggested and used in solutions of various statistical problems. Inference function of this report is the scalar-valued score function of distribution. Keywords: Shortcomings of probability theory; Scalar-valued score functions; Characteristics of continous random variables; Parametric estimation; Transformed distributions; Skew-symmetric distributions Available at various institutes of the ASCR
The scalar-valued score functions of continuous probability distribution

In this report we give theoretical basis of probability theory of continuous random variables based on scalar valued score functions. We maintain consistently the following point of view: It is not ...

Fabián, Zdeněk
Ústav informatiky, 2019

Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator
Gergelits, Tomáš; Mardal, K.-A.; Nielsen, B. F.; Strakoš, Z.
2019 - English
This contribution represents an extension of our earlier studies on the paradigmatic example of the inverse problem of the diffusion parameter estimation from spatio-temporal measurements of fluorescent particle concentration, see [6, 1, 3, 4, 5]. More precisely, we continue to look for an optimal bleaching pattern used in FRAP (Fluorescence Recovery After Photobleaching), being the initial condition of the Fickian diffusion equation maximizing a sensitivity measure. As follows, we define an optimization problem and we show the special feature (so-called complementarity principle) of the optimal binary-valued initial conditions. Available in digital repository of the ASCR
Laplacian preconditioning of elliptic PDEs: Localization of the eigenvalues of the discretized operator

This contribution represents an extension of our earlier studies on the paradigmatic example of the inverse problem of the diffusion parameter estimation from spatio-temporal measurements of ...

Gergelits, Tomáš; Mardal, K.-A.; Nielsen, B. F.; Strakoš, Z.
Ústav informatiky, 2019

Absolute Value Mapping
Rohn, Jiří
2019 - English
We prove a necessary and sufficient condition for an absolute value mapping to be bijective. This result simultaneously gives a characterization of unique solvability of an absolute value equation for each right-hand side. Keywords: absolute value mapping; bijectivity; interval matrix; regularity; absolute value equation; unique solvability Available in a digital repository NRGL
Absolute Value Mapping

We prove a necessary and sufficient condition for an absolute value mapping to be bijective. This result simultaneously gives a characterization of unique solvability of an absolute value equation for ...

Rohn, Jiří
Ústav informatiky, 2019

On the Optimal Initial Conditions for an Inverse Problem of Model Parameter Estimation - a Complementarity Principle
Matonoha, Ctirad; Papáček, Š.
2019 - English
This contribution represents an extension of our earlier studies on the paradigmatic example of the inverse problem of the diffusion parameter estimation from spatio-temporal measurements of fluorescent particle concentration, see [6, 1, 3, 4, 5]. More precisely, we continue to look for an optimal bleaching pattern used in FRAP (Fluorescence Recovery After Photobleaching), being the initial condition of the Fickian diffusion equation maximizing a sensitivity measure. As follows, we define an optimization problem and we show the special feature (so-called complementarity principle) of the optimal binary-valued initial conditions. Available in digital repository of the ASCR
On the Optimal Initial Conditions for an Inverse Problem of Model Parameter Estimation - a Complementarity Principle

This contribution represents an extension of our earlier studies on the paradigmatic example of the inverse problem of the diffusion parameter estimation from spatio-temporal measurements of ...

Matonoha, Ctirad; Papáček, Š.
Ústav informatiky, 2019

Overdetermined Absolute Value Equations
Rohn, Jiří
2019 - English
We consider existence, uniqueness and computation of a solution of an absolute value equation in the overdetermined case. Keywords: absolute value equations; overdetermined system Available in a digital repository NRGL
Overdetermined Absolute Value Equations

We consider existence, uniqueness and computation of a solution of an absolute value equation in the overdetermined case.

Rohn, Jiří
Ústav informatiky, 2019

A Hybrid Method for Nonlinear Least Squares that Uses Quasi-Newton Updates Applied to an Approximation of the Jacobian Matrix
Lukšan, Ladislav; Vlček, Jan
2019 - English
In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation A of the Jacobian matrix J, such that AT f = JT f. This property allows us to solve a linear least squares problem, minimizing ∥Ad+f∥ instead of solving the normal equation ATAd+JT f = 0, where d ∈ Rn is the required direction vector. Computational experiments confirm the efficiency of the new method. Keywords: nonlinear least squares; hybrid methods; trust-region methods; quasi-Newton methods; numerical algorithms; numerical experiments Available at various institutes of the ASCR
A Hybrid Method for Nonlinear Least Squares that Uses Quasi-Newton Updates Applied to an Approximation of the Jacobian Matrix

In this contribution, we propose a new hybrid method for minimization of nonlinear least squares. This method is based on quasi-Newton updates, applied to an approximation A of the Jacobian matrix J, ...

Lukšan, Ladislav; Vlček, Jan
Ústav informatiky, 2019

Application of the Infinitely Many Times Repeated BNS Update and Conjugate Directions to Limited-Memory Optimization Methods
Vlček, Jan; Lukšan, Ladislav
2019 - English
To improve the performance of the L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed. Since this can be time consuming, the extra updates need to be selected carefully. We show that groups of these updates can be repeated infinitely many times under some conditions, without a noticeable increase of the computational time; the limit update is a block BFGS update. It can be obtained by solving of some Lyapunov matrix equation whose order can be decreased by application of vector corrections for conjugacy. Global convergence of the proposed algorithm is established for convex and sufficiently smooth functions. Numerical results indicate the efficiency of the new method. Keywords: unconstrained minimization; limited-memory variable metric methods; the repeated Byrd-Nocedal-Schnabel update; the Lyapunov matrix equation; the conjugate directions; global convergence; numerical results Available at various institutes of the ASCR
Application of the Infinitely Many Times Repeated BNS Update and Conjugate Directions to Limited-Memory Optimization Methods

To improve the performance of the L-BFGS method for large scale unconstrained optimization, repeating of some BFGS updates was proposed. Since this can be time consuming, the extra updates need to be ...

Vlček, Jan; Lukšan, Ladislav
Ústav informatiky, 2019

Hybrid Methods for Nonlinear Least Squares Problems
Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
2019 - English
This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function F(x) = (1=2)fT (x)f(x), where x ∈ Rn and f ∈ Rm, together with extensive computational tests and comparisons of the introduced methods. All hybrid methods are described in detail and their global convergence is proved in a unified way. Some proofs concerning trust region methods, which are difficult to find in the literature, are also added. In particular, the report contains an analysis of a new simple hybrid method with Jacobian corrections (Section 8) and an investigation of the simple hybrid method for sparse least squares problems proposed previously in [33] (Section 14). Keywords: numerical optimization; nonlinear least squares; trust region methods; hybrid methods; sparse problems; partially separable problems; numerical experiments Available in a digital repository NRGL
Hybrid Methods for Nonlinear Least Squares Problems

This contribution contains a description and analysis of effective methods for minimization of the nonlinear least squares function F(x) = (1=2)fT (x)f(x), where x ∈ Rn and f ∈ Rm, together with ...

Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan
Ústav informatiky, 2019

Transforming hierarchical images to program expressions using deep networks
Křen, Tomáš
2018 - English
We present a technique describing how to effectively train a neural network given an image to produce a formal description of the given image. The basic motivation of the proposed technique is an intention to design a new tool for automatic program synthesis capable of transforming sensory data (in our case static image, but generally a phenotype) to a formal code expression (i.e. syntactic tree of a program), such that the code (from evolutionary perspective a genotype) evaluates to a value that is similar to the input data, ideally identical. Our approach is partially based on our technique for generating program expressions in the context of typed functional genetic programming. We present promising results evaluating a simple image description language achieved with a deep network combining convolution encoder of images and recurrent decoder for generating program expressions in the sequential prefix notation and propose possible future applications. Keywords: deep networks; automatic program synthesis; image processing Available in a digital repository NRGL
Transforming hierarchical images to program expressions using deep networks

We present a technique describing how to effectively train a neural network given an image to produce a formal description of the given image. The basic motivation of the proposed technique is an ...

Křen, Tomáš
Ústav informatiky, 2018

Nonparametric Bootstrap Techniques for Implicitly Weighted Robust Estimators
Kalina, Jan
2018 - English
The paper is devoted to highly robust statistical estimators based on implicit weighting, which have a potential to find econometric applications. Two particular methods include a robust correlation coefficient based on the least weighted squares regression and the minimum weighted covariance determinant estimator, where the latter allows to estimate the mean and covariance matrix of multivariate data. New tools are proposed allowing to test hypotheses about these robust estimators or to estimate their variance. The techniques considered in the paper include resampling approaches with or without replacement, i.e. permutation tests, bootstrap variance estimation, and bootstrap confidence intervals. The performance of the newly described tools is illustrated on numerical examples. They reveal the suitability of the robust procedures also for non-contaminated data, as their confidence intervals are not much wider compared to those for standard maximum likelihood estimators. While resampling without replacement turns out to be more suitable for hypothesis testing, bootstrapping with replacement yields reliable confidence intervals but not corresponding hypothesis tests. Keywords: robust statistics; econometrics; correlation coefficient; multivariate data Fulltext is available at external website.
Nonparametric Bootstrap Techniques for Implicitly Weighted Robust Estimators

The paper is devoted to highly robust statistical estimators based on implicit weighting, which have a potential to find econometric applications. Two particular methods include a robust correlation ...

Kalina, Jan
Ústav informatiky, 2018

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases