Computational and experimental assessment of natural frequencies in a bladed disk system
Mekhalfia, Mohammed Lamine; Procházka, Pavel; Maturkanič, Dušan; Voronova, Evgeniya; Hodboď, Robert
2024 - anglický
This paper examines the modal characteristics of a bladed disk in rotating machinery systems using a combination of analytical and experimental modal analysis methods. The analysis involves measuring natural frequencies and mode shapes under different operational conditions. A comparative analysis is conducted to assess modal properties obtained from both analytical and experimental approaches, while also considering the influence of rotation speed. Additionally, Finite Element Method (FEM) outputs are used to accurately position the strain gauge. Integrating these techniques provides a comprehensive understanding of the bladed disk's behaviour under varying rotational speeds, enhancing result accuracy and facilitating thorough investigation within rotating machinery systems.
Klíčová slova:
natural frequencies; FEM; LDV; strain gauge
Plné texty jsou dostupné na jednotlivých ústavech Akademie věd ČR.
Computational and experimental assessment of natural frequencies in a bladed disk system
This paper examines the modal characteristics of a bladed disk in rotating machinery systems using a combination of analytical and experimental modal analysis methods. The analysis involves measuring ...
Flow simulations approach for flocculation tanks
Idžakovičová, Kristýna; Bílek, V.; Haidl, J.; Isoz, Martin; Pivokonský, M.
2024 - anglický
Flocculation in water treatment facilities plays a key role in the separation of colloidal inorganic and organic substances. Its optimization leads to a significant increase in its efficiency and savings of operational costs. However, it is currently based on trial-and-error experimental approaches. In this contribution, we focus on flow modeling in stirred flocculation tanks that would, after coupling with a calibrated model of particle aggregation, enable simulationbased flocculation optimization. Despite the abundance of literature on stirred tank modeling, there is no universal agreement on the methodology used to describe turbulence nor on the approach to the computational mesh creation. Consequently, there is no unified methodology for simulations and their validation. To address this, we present a best-practice methodology for economical, yet reliable flow simulations in the said device. This methodology includes the choice of the turbulence model, the approach to the design of a high quality mesh suitable for arbitrary geometries, and results evaluation. It is developed based on an extensive literature review, a multitude of flow simulations using several meshes of progressively higher quality and resolution, and various strategies to converge to steady-state flow conditions. The simulation quality indicators used here involve comparison with the experimental data on fluid velocity, stirrer power output, and flow rate through the impeller zone. Additionally, the resulting flow simulation models are compared using tracer transport simulations, hinting at their potential for coupling with particle aggregation models.
Klíčová slova:
flocculation tank; stirring; MRF; CFD; OpenFOAM
Plné texty jsou dostupné na jednotlivých ústavech Akademie věd ČR.
Flow simulations approach for flocculation tanks
Flocculation in water treatment facilities plays a key role in the separation of colloidal inorganic and organic substances. Its optimization leads to a significant increase in its efficiency and ...
Verification of the dynamic properties of a new model turbine wheel with free blades
Voronova, Evgeniya; Procházka, Pavel; Maturkanič, Dušan; Mekhalfia, Mohammed Lamine; Hodboď, Robert
2024 - anglický
The paper describes a new experimental model of turbine wheel with free blades. Verification tests were carried out using a Doppler laser vibrometer, with a focus on the equipment parameters under various conditions. The measurements were performed in the Laboratory of Rotational Laser Vibrometry originated at the Institute of Thermomechanics AS CR, v.v.i.
Klíčová slova:
natural frequencies; vibration; blade; laser; turbine
Plné texty jsou dostupné na jednotlivých ústavech Akademie věd ČR.
Verification of the dynamic properties of a new model turbine wheel with free blades
The paper describes a new experimental model of turbine wheel with free blades. Verification tests were carried out using a Doppler laser vibrometer, with a focus on the equipment parameters under ...
Modification of cooling system for laboratory measurement of rotor blade vibration
Maturkanič, Dušan; Procházka, Pavel; Hodboď, Robert; Voronova, Evgeniya; Mekhalfia, Mohammed Lamine
2024 - anglický
Last year, the replacement of the turbine wheel model was completed in the Laboratory of Rotational Laser Vibrometry of the Institute of Thermomechanics AS CR, v.v.i. Based on previous experience and the expected higher operating load planned for the new wheel, the cooling system was modified at the same time. The paper describes the main effort in this direction and the results that clarify the previous damage of the measuring device.
Klíčová slova:
blade; vibration; cooling system; measurement; laboratory
Plné texty jsou dostupné na jednotlivých ústavech Akademie věd ČR.
Modification of cooling system for laboratory measurement of rotor blade vibration
Last year, the replacement of the turbine wheel model was completed in the Laboratory of Rotational Laser Vibrometry of the Institute of Thermomechanics AS CR, v.v.i. Based on previous experience and ...
DYNAMICS OF MACHINES AND MECHANICAL SYSTEMS WITH INTERACTIONS : PROCEEDINGS DYMAMESI 2024
Zolotarev, Igor; Pešek, Luděk; Kozień, M. S.
2024 - anglický
The aim of the DYMAMESI is to facilitate the exchange of up to date information and knowledge among specialists in structural and multibody dynamics, in coupled interacting systems as aero-elasticity, hydro-elasticity, biomechanics, systems with feedbacks and mechatronics. In 2023 will be hosted by Cracow University of Technology, Institute of Applied Mechanics, Section of Dynamics of Systems.
Klíčová slova:
dynamics; vibrations of mechanical systems; vibrodiagnostics; energy transformations
Plné texty jsou dostupné na jednotlivých ústavech Akademie věd ČR.
DYNAMICS OF MACHINES AND MECHANICAL SYSTEMS WITH INTERACTIONS : PROCEEDINGS DYMAMESI 2024
The aim of the DYMAMESI is to facilitate the exchange of up to date information and knowledge among specialists in structural and multibody dynamics, in coupled interacting systems as aero-elasticity, ...
Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids
Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
2023 - anglický
The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An established approach providing such models is based using a variant of an immersed boundary method to couple the computational fluid dynamics (CFD) and discrete element method (DEM). In the talk, we will present our custom and monolithic implementation of a fully-resolved CFDDEM solver and concentrate on the intricacies of solving contact between two arbitrarily-shaped solids. We shall propose an efficient contact treatment based on the concept of a virtual mesh, which provides the mesh resolution required by DEM through dividing the space around the contact point in a finite volume fashion without any changes to the CFD mesh itself. A substantial part of the talk will devoted to the parallelization of the contact solution, especially in the context of the domain decomposition method imposed by the CFD solver.
Klíčová slova:
CFD; DEM; virtual mesh
Dokument je dostupný na externích webových stránkách.
Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids
The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An ...
Výpočty výměníku mezi primárním okruhem a meziokruhem malého modulárního reaktoru DAVID
Kobylka, D.; Hrubý, Jan; Kordík, Jozef; Gabriel, Dušan; Marek, René; Isoz, Martin
2023 - český
The report summarizes the joint results of the Department of Nuclear Reactors FNSPE, CTU and IT CAS, in the area of thermal and hydraulic calculations of the heat exchanger between the primary and intermediate circuits of the developed small modular reactor (SMR) DAVID. The assignment parameters were further specified during control days and with updated documentation. During the analysis of the initial system parameters, it was found that the original geometric configuration of the exchanger had a completely insufficient surface for heat transfer. A decision was made, several parameters were modified and based on a series of calculations using two independent simplified models, a reasonable configuration with a significantly smaller diameter of the tubes in a significantly larger number was chosen. The pressure losses on both sides of the heat exchanger are within normal ranges and will not cause problems with the construction of these circuits. Although there are differences between the results from both used models, their comparison shows that the chosen different calculation methods lead to approximately the same results and the models do not show fundamental errors.
Klíčová slova:
small modular reactor DAVID; thermodynamics; heat exchanger
Plné texty jsou dostupné na jednotlivých ústavech Akademie věd ČR.
Výpočty výměníku mezi primárním okruhem a meziokruhem malého modulárního reaktoru DAVID
The report summarizes the joint results of the Department of Nuclear Reactors FNSPE, CTU and IT CAS, in the area of thermal and hydraulic calculations of the heat exchanger between the primary and ...
Simulating particle-laden flows: from immersed boundaries towards model order reduction
Isoz, Martin; Kubíčková, Lucie; Kotouč Šourek, M.; Studeník, Ondřej; Kovárnová, A.
2023 - anglický
Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-port of riverbed sediments towards the magma flow, from the deposition of catalytic material inside particulate matter filters in automotive exhaust gas aftertreatment towards the slurry transport in dredging operations. In this contribution, we focus on the particle-resolved direct numerical simulation (PR-DNS) of the particle-laden flow. Such a simulation combines the standard Eulerian approach to computational fluid dynamics (CFD) with inclusion of particles via a variant of the immersed boundary method (IBM) and tracking of the particles movement using a discrete element method (DEM). Provided the used DEM allows for collisions of arbitrarily shaped particles, PR-DNS is based (almost) entirely on first principles, and as such it is a truly high-fidelity model. The downside of PR-DNS is its immense computational cost. In this work, we focus on three possibilities of alleviating the computational cost of PR-DNS: (i) replacing PR-DNS by PR-LES or PR-RANS, while the latter requires combining IBM with wall functions, (ii) improving efficiency of DEM contact solution via adaptively refined virtual mesh, and (iii) developing a method of model order reduction specifically tailored to PR-DNS of particle-laden flows.
Klíčová slova:
particle-laden flow; CFD-DEM; arbitrarily-shaped particles; finite volume method
Dokument je dostupný na externích webových stránkách.
Simulating particle-laden flows: from immersed boundaries towards model order reduction
Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-port of riverbed sediments towards the magma flow, from the deposition of catalytic material ...
On Reynolds-averaged turbulence modeling with immersed boundary method
Kubíčková, Lucie; Isoz, Martin
2023 - anglický
The immersed boundary (IB) method is an approach in the computational fluid dynamics in which complex geometry conforming meshes are replaced by simple ones and the true simulated geometry is projected onto the simple mesh by a scalar field and adjustment of governing equations. Such an approach is particularly advantageous in topology optimizations (TO) where it allows for substantial speed-up since a single mesh can be used for all the tested topologies. In our previous work, we linked our custom IB variant, the hybrid fictitious domain-immersed boundary method (HFDIB), with a TO framework and successfully carried out an optimization under laminar flow conditions. However, to allow for optimizations of reallife components, the IB approach needs to be coupled with an affordable turbulence modeling. In this contribution, we focus on extending the HFDIB approach by the possibility to perform Reynolds-averaged simulations (RAS). In particular, we implemented the k − ω turbulence model and wall functions for closure variables and velocity.
Klíčová slova:
immersed boundary; RAS; wall functions; CFD; OpenFOAM
Dokument je dostupný na externích webových stránkách.
On Reynolds-averaged turbulence modeling with immersed boundary method
The immersed boundary (IB) method is an approach in the computational fluid dynamics in which complex geometry conforming meshes are replaced by simple ones and the true simulated geometry is ...
Finite element modal analysis of a silicone vocal fold filled with fluid
Hájek, P.; Radolf, Vojtěch; Horáček, Jaromír; Švec, J. G.
2023 - anglický
A three dimensional (3D) finite element (FE) model of a silicone vocal fold (VF) filled with fluid is presented here. The silicone part of the model is based on partial differential equations of the continuum mechanics and consider large deformations. The fluid domain encapsulated in the silicone VF is defined semianalytically as a lumped-element model describing the fluid in hydrostatic conditions. The elongated and pressurized silicone VF was subjected to perturbed modal analysis. Results showed that the choice of the fluid inside the VF substantially influences the natural frequencies. Namely, the water-filling lowers the natural frequencies approximately by half over the air-filling. Besides, the procedure of reverse engineering for obtaining the geometry of the VF from already 3D-printed mold is introduced.
Klíčová slova:
perturbed modal analysis; finite element method; vocal folds; reverse engineering; biomechanics of voice
Dokument je dostupný na externích webových stránkách.
Finite element modal analysis of a silicone vocal fold filled with fluid
A three dimensional (3D) finite element (FE) model of a silicone vocal fold (VF) filled with fluid is presented here. The silicone part of the model is based on partial differential equations of the ...
NUŠL poskytuje centrální přístup k informacím o šedé literatuře vznikající v ČR v oblastech vědy, výzkumu a vzdělávání. Více informací o šedé literatuře a NUŠL najdete na webu služby.
Vaše náměty a připomínky posílejte na email nusl@techlib.cz
Provozovatel
Zahraniční báze