Toxic responses in human lung epithelial cells (BEAS-2B) exposed to particulate matter exhaust emissions from gasoline and biogasoline
Závodná, Táňa; Líbalová, Helena; Vrbová, Kristýna; Sikorová, Jitka; Vojtíšek-Lom, M.; Beránek, V.; Pechout, M.; Kléma, J.; Cigánek, M.; Machala, M.; Neča, J.; Rössner ml., Pavel; Topinka, Jan
2021 - English
Motor vehicle emissions substantially contribute to air pollution worldwide and cause serious health problems. While the deleterious effects of diesel exhaust particulate matter (PM) have been widely studied, much less attention is paid to toxicity of PM emitted by gasoline engines although they also produce considerable amount of PM. The primary objective of this research was to assess toxic potencies of exhaust PM released by conventional gasoline engine fueled with neat gasoline (EU) or gasoline-ethanol blend (15% ethanol, v/v, E15). Despite a similar particle mass (mu g PM/kg fuel) produced by both fuels, PM emitted by E15 contained higher amount of harmful polycyclic aromatic hydrocarbons (PAH) as suggested by chemical analysis. To examine the toxicity of organic PM constituents, human lung BEAS-2B cells were exposed for 4h and 24h to a subtoxic dose of E0 and E15 PM organic extracts. We used genome scale transcriptomic analysis to characterize the toxic response and to identify modulated biological process and pathways. Whereas 4h exposure to both PM extracts resulted in modulation of similar genes and pathways related to lipid and steroid metabolism, activation of PPAR alpha, oxidative stress and immune response, 24h exposure was more specific for each extract, although both induced expression of PAH-metabolic enzymes, modulated metabolism of lipids or activated PPAR alpha, E15 additionally deregulated variety of other pathways. Overall, the PM mass produced by both fuels was similar, however, higher PAH content in E15 PM organic extract may have contributed to more extensive toxic response particularly after 24h exposure in BEAS-2B cells.
Keywords:
particulate matter emissions; gasoline; biofuels; toxicity; gene expression profiling
Available at various institutes of the ASCR
Toxic responses in human lung epithelial cells (BEAS-2B) exposed to particulate matter exhaust emissions from gasoline and biogasoline
Motor vehicle emissions substantially contribute to air pollution worldwide and cause serious health problems. While the deleterious effects of diesel exhaust particulate matter (PM) have been widely ...
Optimization of culture conditions of human HepG2 liver cells on 4 types of nano- and micro-fiber carriers
Rössner ml., Pavel
2020 - Czech
The technology describes the optimization of the number of deployed human hepatocytes HepG2, suitable for use in the field of toxicological verification of new drugs or foods, on a 3D culture system consisting of four types of nano- and microfiber carriers. The motivation for finding suitable models for testing potentially genotoxic effects of drugs is the low relevance of tissue models used in the first stages of preclinical evaluation of new substances, as well as the reduction of animal testing. Technologie popisuje optimalizaci počtu nasazovaných lidských hepatocytů HepG2, vhodných pro využívání v oblasti toxikologického ověřování nových léčiv či potravin, na 3D kultivační systém tvořený čtyřmi typy nano- a mikrovlákenných nosičů. Motivací pro hledání vhodných modelů testování potenciálně genotoxických účinků léčiv je nízká relevance tkáňových modelů užívaných v prvních fázích preklinického hodnocení nových látek a také redukce testování na zvířatech.
Keywords:
nanofiber carriers; toxicology; HepG2
Available at various institutes of the ASCR
Optimization of culture conditions of human HepG2 liver cells on 4 types of nano- and micro-fiber carriers
The technology describes the optimization of the number of deployed human hepatocytes HepG2, suitable for use in the field of toxicological verification of new drugs or foods, on a 3D culture system ...
Application potential of screening in vitro toxicological assays in qualitative risk assessment of nanomaterials
Závodná, Táňa; Topinka, Jan; Danihelka, J.
2020 - English
Undeniable benefits of engineered nanomaterials might be discredited by their potential enhanced or unexpected toxicity arising from nano-specific properties and behavior. An analysis of the applicability of the traditional chemical risk assessment approach in nanomaterials revealed high levels of uncertainty in both hazard characterization and exposure assessment due to the lack of relevant validated methods and reliable data. This indicates the limited capability of the conventional risk assessment approach to ensure the safe use of nanomaterials. Based on the identified uncertainties, the control banding approach was proposed as a suitable tool for preliminary qualitative risk assessment of nanomaterials in occupational settings. Control banding categorizes hazard and exposure into levels referred to as bands. The combination of the hazard and exposure bands results in a risk band determining the necessary degree of control and regulatory measures. To decrease the number of cases where, based on the precautionary principle, unavailable experimental or field data would lead to the assignment to the highest hazard category requiring costly exposure control, screening evaluation of nanomaterial toxicity was proposed as an additional decision criterion. For this purpose, a battery of in vitro toxicological assays enabling screening evaluation of potential toxic effects of NMs was proposed. The assays evaluate endpoints covering basic toxic effects of substances (cytotoxicity, genotoxicity), as well as known nonspecific mechanisms of toxicity typical for nanomaterials (oxidative stress, inflammation). The proposed risk management strategy is intended to assist small and medium-sized enterprises to implement adequate measures to ensure employee safety.
Keywords:
toxicity; tool; industrial poisons
Available at various institutes of the ASCR
Application potential of screening in vitro toxicological assays in qualitative risk assessment of nanomaterials
Undeniable benefits of engineered nanomaterials might be discredited by their potential enhanced or unexpected toxicity arising from nano-specific properties and behavior. An analysis of the ...
Ultrafine particles and their possible role in etiology and development of neurodegenerative diseases
Topinka, Jan; Závodná, Táňa; Rössnerová, Andrea; Rössner ml., Pavel
2020 - English
Air pollutants have been shown to cause a vast amount of different adverse health effects. These effects include impairment of many respiratory (e.g. asthma, chronic obstructive pulmonary disease) and cardiovascular (ischemic heart disease, infarction, stroke) diseases. However, in recent years, the evidence showing effects beyond the lungs and circulatory system are becoming more evident. Neurological diseases, namely Alzheimer's disease (AD) has shown to be associated with living near traffic. However, reason for this has remained unresolved until today. Our new H2020 project TUBE aims on revealing the mechanisms of action of ultrafine particles involved in neurological diseases. The TUBE consortium includes experts in areas of aerosol technology, emission research, engine and fuel research, human clinical studies, epidemiology, emission inventories, inhalation toxicology, neurotoxicology and disease mechanism studies. This enables research of resolving the effects of nanoparticles from different traffic modes for both air quality and concomitant toxic effect of these air pollutants. We will investigate adverse effects of air pollutants using cell cultures, animal exposures and volunteered human exposures as well as the material from epidemiological cohort study. These are going to be compared according to inflammatory, cytotoxic and genotoxic changes and furthermore beyond the current state of the art to neurotoxic and brain health effects. With this approach, we are aiming to a comprehensive understanding of the adverse brain effects of nanoparticles from traffic.
Keywords:
Alzheimer's disease; inflammation; neurodegenerative diseases; ultrafine particles
Available at various institutes of the ASCR
Ultrafine particles and their possible role in etiology and development of neurodegenerative diseases
Air pollutants have been shown to cause a vast amount of different adverse health effects. These effects include impairment of many respiratory (e.g. asthma, chronic obstructive pulmonary disease) and ...
The role of dispersion medium on nanoparticle aggregation and size in biological systems
Červená, Tereza; Rössnerová, Andrea; Závodná, Táňa; Vrbová, Kristýna; Sikorová, Jitka; Topinka, Jan; Rössner ml., Pavel
2020 - English
The use of nanomaterials (NMs) in different areas has been rising for more than a decade. Along with this growth, there is visible development of different testing tools and approaches for measuring the actual size of nanomaterials in biological systems. Test conditions during in vitro toxicological assays are different from the standard conditions under which nanomaterials are characterized and careful evaluation of results is needed. The unique properties and range variety of NMs require the close look how the NMs behave in different dispersion medium over time. In this study we present the results of five types of well-characterized NMs (TiO2: NM-101 and NM-103, SiO2: NM-200, Ag: NM-300K and NM-302) of specific size and shape. The hydrodynamic size and Zeta potentials in suspensions were measured using a dynamic light scattering technique (DLS) (Zetasizer Nano ZS, Malvern, UK). The DLS method is suitable for spherical particles, nevertheless, all samples were measured in order to obtain a rough insight into agglomerate formation in the medium. NM300, NM302, and NM200 aggregated rapidly in the media, thus the cells would be most likely exposed to settled big aggregates then small clusters or individual particles. More stable NMs (NM100 and NM103) showed slight grow along with cultivation time or concentration corresponding to cluster formation. Cells exposed to those NMs would be in contact with small clusters and aggregates of NMs. Measured zeta potentials fluctuated around the stability limit corresponding to observed aggregation.
Keywords:
nanomaterials; NMs; DLS; aggregation
Available at various institutes of the ASCR
The role of dispersion medium on nanoparticle aggregation and size in biological systems
The use of nanomaterials (NMs) in different areas has been rising for more than a decade. Along with this growth, there is visible development of different testing tools and approaches for measuring ...
Modified method for evaluation of micronuclei in lymphocytes using hybridization of pancentrometric fluorescently labelled probes
Rössner ml., Pavel; Rössnerová, Andrea
2020 - Czech
This methodology is based on the simultaneous fluorescent staining of both whole chromosomes and their centromere using pancentrometric probes. Thanks to this, it is possible to evaluate the frequencies of micronuclei with / without centromeres, ie to determine the differences between structural and numerical aberrations. The aim of the methodology was to create an innovative procedure for evaluating the genotoxic effects of nanoparticles, chemicals, including drugs or radiation on the DNA of living organisms. Tato metodika je založena na současném fluorescenčním barvení jak celých chromozomů, tak jejich centromer pomocí pancentrometrických sond. Díky tomu je možné vyhodnotit frekvenci mikrojader s / bez centromer, tedy určit rozdíly mezi strukturálními a numerickými aberacemi. Cílem metodiky bylo vytvořit inovativní postup pro vyhodnocení genotoxických účinků nanočástic, chemických látek včetně léků či záření na DNA živých organismů.
Keywords:
genotoxicity; fluorescent staining; pancentrometric probes; nanoparticles
Available at various institutes of the ASCR
Modified method for evaluation of micronuclei in lymphocytes using hybridization of pancentrometric fluorescently labelled probes
This methodology is based on the simultaneous fluorescent staining of both whole chromosomes and their centromere using pancentrometric probes. Thanks to this, it is possible to evaluate the ...
A method for the use of nanofiber scaffolds and stem cells for the treatment of severe damages of the ocular surface
Zajícová, Alena; Javorková, Eliška; Holáň, Vladimír
2019 - Czech
The method describes a new therapeutic approach for the treatment of severe ocular injuries in veterinary medicine. The protocol is based on a cultivation of stem cells and their transfer using nanofiber scaffolds onto damaged ocular surface. This method can be used in the cases when other available treatment options are not sufficient or cannot be used. Metodika popisuje nový léčebný postup pro léčbu závažných poškození očního povrchu ve veterinární medicíně. Postup je založen na kultivaci kmenových buněk a na jejich přenosu pomocí nanovlákenných nosičů na poškozený oční povrch. Metoda je využitelná v případech, kde již jiné dostupné formy léčby nejsou úspěšné.
Keywords:
nanofiber carriers; stem cells; ocular surface injuries; therapeutic methods; veterinary medicine
Available at various institutes of the ASCR
A method for the use of nanofiber scaffolds and stem cells for the treatment of severe damages of the ocular surface
The method describes a new therapeutic approach for the treatment of severe ocular injuries in veterinary medicine. The protocol is based on a cultivation of stem cells and their transfer using ...
Effect of iron oxide nanoparticles with ascorbic acid on neural stem cells
Jiráková, Klára; Moskvin, Maksym; Horák, Daniel; Jendelová, Pavla
2018 - English
Cells labelled with iron oxide nanoparticles (ION) can be tracked by magnetic resonance imaging (MRI) in several applications. However, various studies demonstrated toxicity and oxidative stress induction associated with nanoparticles exposure. We analysed biologic effects after the exposure of two types of iron oxide nanoparticles (with and without an antioxidative agent, an ascorbic acid) on human neural stem cells. The labelled cells in gel phantoms were detected in MRI and they showed decreased relaxation rates in comparison with control. ION slightly decreased cell proliferation in comparison with unlabelled cells, which was dependent on concentration and presence of ascorbic acid. None of the nanoparticle type showed negative effect on cell viability and both demonstrated minor effect on reactive oxygen species (ROS) formation. Unfortunately, ascorbic acid bound to nanoparticles did not show any effect on ROS attenuation. Cells exposed to both types of nanoparticles showed increased positivity for a phosphorylated form of H2AX a marker of double strand breaks. We showed that ION in low concentrations do not affect cell viability, but have negative effect on cells on DNA level. Their potential use for oxidative stress reduction is dependent on the concentration of ascorbic acid bound to the nanoparticles and this should be further increased.
Keywords:
neural stem cells; nanoparticles; oxidative stress; ascorbic acid
Available at various institutes of the ASCR
Effect of iron oxide nanoparticles with ascorbic acid on neural stem cells
Cells labelled with iron oxide nanoparticles (ION) can be tracked by magnetic resonance imaging (MRI) in several applications. However, various studies demonstrated toxicity and oxidative stress ...
GENE EXPRESSION AND IMMUNOLOGICAL RESPONSE IN MICE EXPOSED TO ZnO NANOPARTICLES
Rössner ml., Pavel; Vrbová, Kristýna; Strapáčová, S.; Rössnerová, Andrea; Ambrož, Antonín; Brzicová, Táňa; Líbalová, Helena; Javorková, Eliška; Zajícová, Alena; Holáň, Vladimír; Kulich, P.; Večeřa, Zbyněk; Mikuška, Pavel; Coufalík, Pavel; Křůmal, Kamil; Čapka, Lukáš; Dočekal, Bohumil; Šerý, Omar; Machala, M.; Topinka, Jan
2018 - English
We analyzed gene expression changes in the lungs and the immunological response in splenocytes of mice exposed by inhalation of ZnO nanoparticles - NP. Adult female ICR mice were treated for three days and three months, respectively. Analysis of differential expression in genes involved in oxidative stress was conducted using quantitative RT-PCR. The potential immunotoxic and immunomodulatory effects of ZnO NP were analyzed by phenotyping and cytokine production by splenocytes after three months exposure. Three days exposure resulted in down-regulation of GCLC, GSR, HMOX-1, NQO-1, NF-kB2, PTGS2 and TXNRD1 mRNA expression, three months exposure increased the expression of these genes. Three months exposure caused a significant decrease in the percentage of granulocytes in the spleen cells, and affected the production of IL-10 and IL-6 by lipopolysaccharide-stimulated leukocytes. In summary, our study revealed changes in the expression of genes involved in the oxidative stress response following acute ZnO NP exposure. Subchronic ZnO NP exposure induced immunomodulatory effects in the spleen.
Keywords:
Zinc oxide nanoparticles; inhalation; gene expression; Immune response
Available at various institutes of the ASCR
GENE EXPRESSION AND IMMUNOLOGICAL RESPONSE IN MICE EXPOSED TO ZnO NANOPARTICLES
We analyzed gene expression changes in the lungs and the immunological response in splenocytes of mice exposed by inhalation of ZnO nanoparticles - NP. Adult female ICR mice were treated for three ...
WHOLE-GENOME EXPRESSION ANALYSIS IN THP-1 MACROPHAGE-LIKE CELLS EXPOSED TO DIVERSE NANOMATERIALS
Brzicová, Táňa; Líbalová, Helena; Vrbová, Kristýna; Sikorová, Jitka; Philimonenko, Vlada; Kléma, J.; Topinka, Jan; Rössner ml., Pavel
2018 - English
From the perspective of the immune system, nanomaterials (NMs) represent invading agents. Macrophages are immune cells residing in all organs and tissues as the first line of defense. Interactions of macrophages with NMs can determine the fate of NMs as well as their potential toxic effects. In the present study, we compared toxicity of four different types of NMs [NM-100 (TiO2, 110 nm), NM-110 (ZnO, 20 nm), NM-200 (SiO2, 150 nm) and NM-300K (Ag, 20 nm)], towards THP-1 macrophage-like cells. Cells were incubated with non-cytotoxic concentrations (1-25 mu g/ml) of NMs for 24 hours and microarray technology was used to analyze changes in whole-genome expression. Gene expression profiling revealed a substantially different molecular response following exposure to diverse NMs. While NM-100 did not exert any significant effect on gene expression profile, all other NMs triggered a pro-inflammatory response characterized by an activation of the NF-kappa B transcription factor and induced expression of numerous chemokines and cytokines. NM-110 and NM-300K further modulated processes such as DNA damage response, oxidative and replication stress as well as cell cycle progression and proteasome function. We suppose that genotoxicity of ZnO and Ag NMs leading to DNA damage and alternatively to apoptosis in THP-1 macrophages is probably caused by the extensive intracellular dissolution of these NPs, as confirmed by TEM imaging.
Keywords:
nanomaterials; toxicity; THP-1 macrophages; gene expression profiling
Available at various institutes of the ASCR
WHOLE-GENOME EXPRESSION ANALYSIS IN THP-1 MACROPHAGE-LIKE CELLS EXPOSED TO DIVERSE NANOMATERIALS
From the perspective of the immune system, nanomaterials (NMs) represent invading agents. Macrophages are immune cells residing in all organs and tissues as the first line of defense. Interactions of ...
NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web
Send your suggestions and comments to nusl@techlib.cz
Provider
Other bases