Number of found documents: 2
Published from to

Nové trendy v oblasti solárních systémů
2016 -
V souvislosti s celosvětově rostoucí poptávkou po energiích, zmenšujícími se zásobami "tradičních" neobnovitelných zdrojů energie a rostoucím znečištěním životního prostředí nabývají v energetice stále významnějšího postavení obnovitelné zdroje energie (ve zkratce OZE), zejména oblast fotovoltaických (FV) článků. V posledních několika letech je tato v celosvětovém měřítku jedním z nejprogresivněji se rozvíjejících oborů a je pokládána za nejdůležitější technologii 21. století. Roční nárůst instalovaného výkonu FV systémů se celosvětově pohybuje okolo 30 %. Na konci roku 2012 přesáhl celkový instalovaný výkon neuvěřitelných 100 GWp, tj. 100 krát více než roku 1999. Například v roce 2008 to přitom bylo "jen" 14 GWp, z toho v Evropě 9 GWp. Důvodů pro tento stoupající trend je hned několik. Zejména se však jedná o ekologické a ekonomické hledisko. Při provozu FV elektráren nevznikají žádné emise, odpadní vody, radioaktivní látky, ani hluk. Nemusíme se ani obávat účtů za využívání sluneční energie. Příznivá je v současnosti i energetická návratnost výroby FV článků a jejich životnost. Největší nevýhodou energie Slunce je naopak, podobně jako u ostatních OZE, její silná závislost na místně-časových podmínkách, i počasí. Produkce elektrické energie z FV článků je přímo závislá na délce a intenzitě slunečního svitu, míře znečištění ovzduší, atd. Diagram výroby elektrické energie pomocí FV systémů se proto nekryje s průběhem její roční spotřeby. Nejvyšší výroba elektrické energie je v letních měsících, kdy je nejnižší spotřeba. Naopak v zimním období, kdy je spotřeba nejvyšší, je produkce minimální. Přesto lze s ohledem na již zmíněnou rostoucí poptávku po energiích předpokládat, že význam FV ve světové energetice nebude klesat. Spíše naopak. Do budoucna ji lze chápat jako technologii s neomezeným růstovým potenciálem a časově neomezenou možností výroby elektrické energie. Nejedná se však jen o zajímavou technologii, ale i o vyspělé průmyslové odvětví, které pozitivně ovlivňuje nejen obchodní aktivity, ale i zaměstnanost a kvalifikaci vědeckých pracovníků. Cestou jak udržet FV v popředí světové energetiky je a bude výzkum a vývoj nových technologií a materiálů vhodných k výrobě FV článků. V současné době se zaměřuje pozornost v této oblasti zejména na tenkovrstvé (TF) FV články, jimž se podrobněji zabývá tato práce. Její první část ve stručnosti popisuje vývoj spotřeby energií, elektromagnetické záření Slunce a jeho možné využití. Druhá část je úvodem do oblasti FV. Kromě jiného je zde objasněn princip FV jevu, krátce zmíněna historie vývoje FV článků, vysvětlena pásová teorie polovodičů a princip p-n přechodu, který tvoří základ FV článků I. generace. Největší část je věnována TF článkům III. generace, konkrétně článkům tandemovým, a to jak teorii spjaté s touto problematikou, tak především celé řadě experimentů, které byly v rámci disertační práce provedeny. Pokud jde o teoretickou část, tato obsahuje informace o principu tandemových článků p-i-n přechodu, jejich struktuře, materiálech a základních parametrech. Co se týká experimentální části, lze ji rozdělit do dvou částí. První z těchto zahrnuje přípravu křemíkových TF vrstev depoziční metodou PECVD, druhá pak analýzu 26 vlastností těchto vrstev s ohledem na jejich aplikace v oblasti tandemových FV článků. Každá z těchto dvou částí přitom obsahuje nejen celou řadu teoretických informací týkající se použitých experimentálních technik a metod, ale i stručnou charakteristiku přístrojového i softwarového vybavení, popis provedených experimentů, jejich vyhodnocení i zpracování analyzovaných dat formou grafů a tabulek. V závěru disertační práce je pak uvedeno shrnutí analyzovaných vlastností TF, zmíněny hlavní přínosy práce a nastíněny další směry ve výzkumu a vývoji tandemových článků, a to včetně důvodů pro jeho pokračování. Keywords: elektroenergetika; energie slunce; foton; fotovoltaický článek; tenkovrstvý materiál; p-i-n přechod; amorfní hydrogenizovaný křemík; mikrokrystalický hydrogenizovaný křemík; transparentní vodivý oxid; depozice; pecvd; spektroskopie; rtg difrakce Available in the ZČU Library.
Nové trendy v oblasti solárních systémů

elektrické energie z FV článků je přímo závislá na délce a intenzitě slunečního svitu, míře znečištění ovzduší, atd. Diagram výroby elektrické energie pomocí FV systémů se proto nekryje s ...

Západočeská univerzita v Plzni, 2016

Nové trendy v oblasti solárních systémů
2014 -
V souvislosti s celosvětově rostoucí poptávkou po energiích, zmenšujícími se zásobami "tradičních" neobnovitelných zdrojů energie a rostoucím znečištěním životního prostředí nabývají v energetice stále významnějšího postavení obnovitelné zdroje energie (ve zkratce OZE), zejména oblast fotovoltaických (FV) článků. V posledních několika letech je tato v celosvětovém měřítku jedním z nejprogresivněji se rozvíjejících oborů a je pokládána za nejdůležitější technologii 21. století. Roční nárůst instalovaného výkonu FV systémů se celosvětově pohybuje okolo 30 %. Na konci roku 2012 přesáhl celkový instalovaný výkon neuvěřitelných 100 GWp, tj. 100 krát více než roku 1999. Například v roce 2008 to přitom bylo "jen" 14 GWp, z toho v Evropě 9 GWp. Důvodů pro tento stoupající trend je hned několik. Zejména se však jedná o ekologické a ekonomické hledisko. Při provozu FV elektráren nevznikají žádné emise, odpadní vody, radioaktivní látky, ani hluk. Nemusíme se ani obávat účtů za využívání sluneční energie. Příznivá je v současnosti i energetická návratnost výroby FV článků a jejich životnost. Největší nevýhodou energie Slunce je naopak, podobně jako u ostatních OZE, její silná závislost na místně-časových podmínkách, i počasí. Produkce elektrické energie z FV článků je přímo závislá na délce a intenzitě slunečního svitu, míře znečištění ovzduší, atd. Diagram výroby elektrické energie pomocí FV systémů se proto nekryje s průběhem její roční spotřeby. Nejvyšší výroba elektrické energie je v letních měsících, kdy je nejnižší spotřeba. Naopak v zimním období, kdy je spotřeba nejvyšší, je produkce minimální. Přesto lze s ohledem na již zmíněnou rostoucí poptávku po energiích předpokládat, že význam FV ve světové energetice nebude klesat. Spíše naopak. Do budoucna ji lze chápat jako technologii s neomezeným růstovým potenciálem a časově neomezenou možností výroby elektrické energie. Nejedná se však jen o zajímavou technologii, ale i o vyspělé průmyslové odvětví, které pozitivně ovlivňuje nejen obchodní aktivity, ale i zaměstnanost a kvalifikaci vědeckých pracovníků. Cestou jak udržet FV v popředí světové energetiky je a bude výzkum a vývoj nových technologií a materiálů vhodných k výrobě FV článků. V současné době se zaměřuje pozornost v této oblasti zejména na tenkovrstvé (TF) FV články, jimž se podrobněji zabývá tato práce. Její první část ve stručnosti popisuje vývoj spotřeby energií, elektromagnetické záření Slunce a jeho možné využití. Druhá část je úvodem do oblasti FV. Kromě jiného je zde objasněn princip FV jevu, krátce zmíněna historie vývoje FV článků, vysvětlena pásová teorie polovodičů a princip p-n přechodu, který tvoří základ FV článků I. generace. Největší část je věnována TF článkům III. generace, konkrétně článkům tandemovým, a to jak teorii spjaté s touto problematikou, tak především celé řadě experimentů, které byly v rámci disertační práce provedeny. Pokud jde o teoretickou část, tato obsahuje informace o principu tandemových článků p-i-n přechodu, jejich struktuře, materiálech a základních parametrech. Co se týká experimentální části, lze ji rozdělit do dvou částí. První z těchto zahrnuje přípravu křemíkových TF vrstev depoziční metodou PECVD, druhá pak analýzu 26 vlastností těchto vrstev s ohledem na jejich aplikace v oblasti tandemových FV článků. Každá z těchto dvou částí přitom obsahuje nejen celou řadu teoretických informací týkající se použitých experimentálních technik a metod, ale i stručnou charakteristiku přístrojového i softwarového vybavení, popis provedených experimentů, jejich vyhodnocení i zpracování analyzovaných dat formou grafů a tabulek. V závěru disertační práce je pak uvedeno shrnutí analyzovaných vlastností TF, zmíněny hlavní přínosy práce a nastíněny další směry ve výzkumu a vývoji tandemových článků, a to včetně důvodů pro jeho pokračování. Keywords: elektroenergetika; energie slunce; foton; fotovoltaický článek; tenkovrstvý materiál; p-i-n přechod; amorfní hydrogenizovaný křemík; mikrokrystalický hydrogenizovaný křemík; transparentní vodivý oxid; depozice; PECVD; spektroskopie; RTG difrakce Available in the ZČU Library.
Nové trendy v oblasti solárních systémů

elektrické energie z FV článků je přímo závislá na délce a intenzitě slunečního svitu, míře znečištění ovzduší, atd. Diagram výroby elektrické energie pomocí FV systémů se proto nekryje s ...

Západočeská univerzita v Plzni, 2014

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases