Počet nalezených dokumentů: 2090
Publikováno od do

Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements
Vacek, Karel; Sváček, P.
2024 - anglický
This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible Navier-Stokes equations written in the arbitrary Eulerian-Lagrangian (ALE) formulation. The ALE mapping is constructed with the use of a pseudo-elastic approach. The flow problem is numerically approximated by the finite element method (FEM). For discretization of the fluid flow, the results obtained by both the Taylor-Hood (TH) element and the Scott-Vogelius (SV) finite element are compared. The TH element satisfies the Babuška-Brezzi inf-sup condition, which guarantees the stability of the scheme. In the case of the SV element the mesh, that is created as a barycentric refinement of regular triangulation, is used to satisfy the Babuška-Brezzi condition. The numerical results for two benchmark problems are shown. Klíčová slova: finite element method; arbitrary Lagrangian-Eulerian method; Scott-Vogelius element; Taylor-Hood element Plné texty jsou dostupné v digitálním repozitáři Akademie Věd.
Finite element approximation of fluid structure interaction using Taylor-Hood and Scott-Vogelius elements

This paper addresses the problem of fluid flow interacting a vibrating solid cylinder described by one degree of freedom system and with fixed airfoil. The problem is described by the incompressible ...

Vacek, Karel; Sváček, P.
Matematický ústav, 2024

Numerical study of the steady airflow in the human respiratory system during inhaling and exhaling
Lancmanová, Anna; Bodnár, Tomáš
2024 - anglický
This paper presents some of the initial results of the numerical simulations of a steady turbulent flow in human upper airways during inhalation and exhalation. The mathematical model is based on the system of Reynolds-Averaged incompressible Navier-Stokes equations complemented by the SST k − ω turbulence model. The simulations were performed using finite-volume open source solver OpenFOAM on a realistic three-dimensional geometry. The main aim of this particular study is to verify the computational setup with special focus on appropriate choice and implementation of boundary conditions. The prescribed boundary conditions are chosen to mimic the physiological conditions during normal breathing cycle. This study aims to gain an insight into the airflow behavior during the inhalation and exhalation process by comparing the results of two distinct simulations corresponding to two different (opposite) flow rates . The obtained local flow rates and flow fields for both cases are presented and mutually compared. This initial work should serve as a foundation for future more complex simulations that will include the time-dependent and compressible effects. Klíčová slova: human airways; incompressible Navier-Stokes; OpenFOAM Plné texty jsou dostupné v digitálním repozitáři Akademie Věd.
Numerical study of the steady airflow in the human respiratory system during inhaling and exhaling

This paper presents some of the initial results of the numerical simulations of a steady turbulent flow in human upper airways during inhalation and exhalation. The mathematical model is based on the ...

Lancmanová, Anna; Bodnár, Tomáš
Matematický ústav, 2024

Numerical evaluation of mass-diffusive compressible fluids flows models
Bodnár, Tomáš; Fraunié, P.
2024 - anglický
This contribution presents first numerical tests of some recently published alternative models for solution of viscous compressible and nearly incompressible models. All models are solved by high resolution compact finite difference scheme with strong stability preserving RungeKutta time stepping. The two simple but challenging computational test cases are presented, based on the double-periodic shear layer and the Kelvin-Helmholtz instability. The obtained time-dependent flow fields are showing pronounced shear and vorticity layers being resolved by the standard as well as by the new mass-diffusive modified models. The preliminary results show that the new models are viable alternative to the well established classical models. Klíčová slova: compressible Navier-Stokes; nearly incompressible flow; mass diffusion; compact finite-difference Plné texty jsou dostupné v digitálním repozitáři Akademie Věd.
Numerical evaluation of mass-diffusive compressible fluids flows models

This contribution presents first numerical tests of some recently published alternative models for solution of viscous compressible and nearly incompressible models. All models are solved by high ...

Bodnár, Tomáš; Fraunié, P.
Matematický ústav, 2024

Motion of fluids in the moving domain
Nečasová, Šárka
2024 - anglický
It is a survay paper where the problem of the existence of weak solutions of compressible barotropic solutions in a moving bounded domain is studied. Klíčová slova: compressible fluid; moving domain; weak solutions Plné texty jsou dostupné v digitálním repozitáři Akademie Věd.
Motion of fluids in the moving domain

It is a survay paper where the problem of the existence of weak solutions of compressible barotropic solutions in a moving bounded domain is studied.

Nečasová, Šárka
Matematický ústav, 2024

Some modifications of the limited-memory variable metric optimization methods
Vlček, Jan; Lukšan, Ladislav
2023 - anglický
Several modifications of the limited-memory variable metric (or quasi-Newton) line search methods for large scale unconstrained optimization are investigated. First the block version of the symmetric rank-one (SR1) update formula is derived in a similar way as for the block BFGS update in Vlˇcek and Lukˇsan (Numerical Algorithms 2019). The block SR1 formula is then modified to obtain an update which can reduce the required number of arithmetic operations per iteration. Since it usually violates the corresponding secant conditions, this update is combined with the shifting investigated in Vlˇcek and Lukˇsan (J. Comput. Appl. Math. 2006). Moreover, a new efficient way how to realize the limited-memory shifted BFGS method is proposed. For a class of methods based on the generalized shifted economy BFGS update, global convergence is established. A numerical comparison with the standard L-BFGS and BNS methods is given. Klíčová slova: unconstrained minimization; variable metric methods; limited-memory methods; variationally derived methods; arithmetic operations reduction; global convergence Plné texty jsou dostupné v digitálním repozitáři NUŠL
Some modifications of the limited-memory variable metric optimization methods

Several modifications of the limited-memory variable metric (or quasi-Newton) line search methods for large scale unconstrained optimization are investigated. First the block version of the symmetric ...

Vlček, Jan; Lukšan, Ladislav
Ústav informatiky, 2023

GA 19-07635S: Outputs and Results
Rehák, Branislav
2023 - anglický
This manuscript aims to deliver a survey of results obtained during the solution of the project No. GA19-07635S of the Czech Science Foundation. The timespan dedicated to the work on this project was 1.3.2019 - 30.6.2022. The main area dealt with were\nnonlinear multi-agent systems and their synchronization, further, attention was paid to some auxiliary results in the area of nonlinear observers. This Report briefly introduces the Project, provides a summary of the results obtained and also sketches an outline how these results will be applied and extended in future. Klíčová slova: multi-agent systems; nonlinear multi-agent systems; synchronization Dokument je dostupný na externích webových stránkách.
GA 19-07635S: Outputs and Results

This manuscript aims to deliver a survey of results obtained during the solution of the project No. GA19-07635S of the Czech Science Foundation. The timespan dedicated to the work on this project was ...

Rehák, Branislav
Ústav teorie informace a automatizace, 2023

Ambiguity in Stochastic Optimization Problems with Nonlinear Dependence on a Probability Measure via Wasserstein Metric
Kaňková, Vlasta
2023 - anglický
Many economic and financial applications lead to deterministic optimization problems depending on a probability measure. It happens very often (in applications) that these problems have to be solved on the data base. Point estimates of an optimal value and estimates of an optimal solutionset can be obtained by this approach. A consistency, a rate of convergence and normal properties, of these estimates, have been discussed (many times) not only under assumptions of independent data corresponding to the distributions with light tails, but also for weak dependent data and the distributions with heavy tails. However, it is also possible to estimate (on the data base) a confidence intervals and bounds for the optimal value and the optimal solutions. To analyze this approach we focus on a special case of static problems depending nonlineary on the probability measure. Stability results based on the Wasserstein metric and the Valander approach will be employed for the above mentioned analysis. Klíčová slova: Stochastic optimization problems; static problems; empirical measure; point estimates; interval estimates; nonlinear dependence Dokument je dostupný na externích webových stránkách.
Ambiguity in Stochastic Optimization Problems with Nonlinear Dependence on a Probability Measure via Wasserstein Metric

Many economic and financial applications lead to deterministic optimization problems depending on a probability measure. It happens very often (in applications) that these problems have to be solved ...

Kaňková, Vlasta
Ústav teorie informace a automatizace, 2023

Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids
Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
2023 - anglický
The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An established approach providing such models is based using a variant of an immersed boundary method to couple the computational fluid dynamics (CFD) and discrete element method (DEM). In the talk, we will present our custom and monolithic implementation of a fully-resolved CFDDEM solver and concentrate on the intricacies of solving contact between two arbitrarily-shaped solids. We shall propose an efficient contact treatment based on the concept of a virtual mesh, which provides the mesh resolution required by DEM through dividing the space around the contact point in a finite volume fashion without any changes to the CFD mesh itself. A substantial part of the talk will devoted to the parallelization of the contact solution, especially in the context of the domain decomposition method imposed by the CFD solver. Klíčová slova: CFD; DEM; virtual mesh Dokument je dostupný na externích webových stránkách.
Improving computational efficiency of contact solution in fully resolved CFD-DEM simulations with arbitrarily-shaped solids

The abundance of industrial processes containing both solid and liquid phases generate demand for fully resolved models allowing for detailed analysis and optimization of these processes. An ...

Studeník, Ondřej; Kotouč Šourek, M.; Isoz, Martin
Ústav termomechaniky, 2023

On the development of a numerical model for the simulation of air flow in the human airways
Lancmanová, Anna; Bodnár, Tomáš; Sequeira, A.
2023 - anglický
This contribution reports on an ongoing study focusing on reduced order models for incompressible viscous fluid flow in two dimensional channels. A finite difference solver was developed using a simple implementation of the immersed boundary method to represent the channel geometry. The solver was validated for unsteady flow by comparing the obtained two-dimensional numerical solutions with analytical profiles computed from the Womersley solution. Finally the 2D model was coupled to a simple 1D extension simulating the flow in axisymmetric elastic vessel (tube). Some of the coupling principles and implementation issues are discussed in detail. Klíčová slova: reduced order model; incompressible Navier-Stokes equations; finite difference approximation; coupling method Plné texty jsou dostupné v digitálním repozitáři Akademie Věd.
On the development of a numerical model for the simulation of air flow in the human airways

This contribution reports on an ongoing study focusing on reduced order models for incompressible viscous fluid flow in two dimensional channels. A finite difference solver was developed using a ...

Lancmanová, Anna; Bodnár, Tomáš; Sequeira, A.
Matematický ústav, 2023

Simulating particle-laden flows: from immersed boundaries towards model order reduction
Isoz, Martin; Kubíčková, Lucie; Kotouč Šourek, M.; Studeník, Ondřej; Kovárnová, A.
2023 - anglický
Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-port of riverbed sediments towards the magma flow, from the deposition of catalytic material inside particulate matter filters in automotive exhaust gas aftertreatment towards the slurry transport in dredging operations. In this contribution, we focus on the particle-resolved direct numerical simulation (PR-DNS) of the particle-laden flow. Such a simulation combines the standard Eulerian approach to computational fluid dynamics (CFD) with inclusion of particles via a variant of the immersed boundary method (IBM) and tracking of the particles movement using a discrete element method (DEM). Provided the used DEM allows for collisions of arbitrarily shaped particles, PR-DNS is based (almost) entirely on first principles, and as such it is a truly high-fidelity model. The downside of PR-DNS is its immense computational cost. In this work, we focus on three possibilities of alleviating the computational cost of PR-DNS: (i) replacing PR-DNS by PR-LES or PR-RANS, while the latter requires combining IBM with wall functions, (ii) improving efficiency of DEM contact solution via adaptively refined virtual mesh, and (iii) developing a method of model order reduction specifically tailored to PR-DNS of particle-laden flows. Klíčová slova: particle-laden flow; CFD-DEM; arbitrarily-shaped particles; finite volume method Dokument je dostupný na externích webových stránkách.
Simulating particle-laden flows: from immersed boundaries towards model order reduction

Particle-laden flow is prevalent both in nature and in industry. Its appearance ranges from the trans-port of riverbed sediments towards the magma flow, from the deposition of catalytic material ...

Isoz, Martin; Kubíčková, Lucie; Kotouč Šourek, M.; Studeník, Ondřej; Kovárnová, A.
Ústav termomechaniky, 2023

O službě

NUŠL poskytuje centrální přístup k informacím o šedé literatuře vznikající v ČR v oblastech vědy, výzkumu a vzdělávání. Více informací o šedé literatuře a NUŠL najdete na webu služby.

Vaše náměty a připomínky posílejte na email nusl@techlib.cz

Provozovatel

http://www.techlib.cz

Facebook

Zahraniční báze