Number of found documents: 1630
Published from to

Spatio-Spectral EEG Patterns in the Source-Reconstructed Space and Relation to Resting-State Networks: An EEG-fMRI Study
Jiříček, Stanislav; Koudelka, V.; Mantini, D.; Mareček, R.; Hlinka, Jaroslav
2022 - English
In this work, we present and evaluate a novel EEG-fMRI integration approach combining a spatio-spectral decomposition method and a reliable source localization technique. On the large 72 subjects resting- state hdEEG-fMRI data set we tested the stability of the proposed method in terms of both extracted spatio-spectral patterns(SSPs) as well as their correspondence to the BOLD signal. We also compared the proposed method with the spatio-spectral decomposition in the electrode space as well as well-known occipital alpha correlate in terms of the explained variance of BOLD signal. We showed that the proposed method is stable in terms of extracted patterns and where they correlate with the BOLD signal. Furthermore, we show that the proposed method explains a very similar level of the BOLD signal with the other methods and that the BOLD signal in areas of typical BOLD functional networks is explained significantly more than by a chance. Nevertheless, we didn’t observe a significant relation between our source-space SSPs and the BOLD ICs when spatio-temporally comparing them. Finally, we report several the most stable source space EEG-fMRI patterns together with their interpretation and comparison to the electrode space patterns. Keywords: EEG-fMRI Integration; EEG-informed fMRI; Spatio-spectral Decomposition; Electrical Source Imaging; Independent Component Analysis; Resting State Networks Available in digital repository of the ASCR
Spatio-Spectral EEG Patterns in the Source-Reconstructed Space and Relation to Resting-State Networks: An EEG-fMRI Study

In this work, we present and evaluate a novel EEG-fMRI integration approach combining a spatio-spectral decomposition method and a reliable source localization technique. On the large 72 subjects ...

Jiříček, Stanislav; Koudelka, V.; Mantini, D.; Mareček, R.; Hlinka, Jaroslav
Ústav informatiky, 2022

Czech Gathering of Logicians 2022. Book of Abstracts
Haniková, Zuzana; Švejdar, V.; Wannenburg, Johann Joubert
2022 - English
Fulltext is available at external website.
Czech Gathering of Logicians 2022. Book of Abstracts

Haniková, Zuzana; Švejdar, V.; Wannenburg, Johann Joubert
Ústav informatiky, 2022

Tisková zpráva - měření tepelného komfortu
Geletič, Jan; Lehnert, M.
2022 - Czech
Fulltext is available at external website.
Tisková zpráva - měření tepelného komfortu

Geletič, Jan; Lehnert, M.
Ústav informatiky, 2022

A Measure of Variability WIthin Parametric Families of Continuous Distributions
Fabián, Zdeněk
2022 - English
A continuous probability measure on an open interval of the real line induces in it a unique geometry, "center of gravity" of which is the typical value of the distribution. In the paper is identified a score variance as a finite measure of variability of distributions with respect to the typical value and discussed its properties and methods of estimation. Itroducing a generalized Rao distance in the sample space one can appraise the precision of the estimate of the typical value. Keywords: scalar-valued score; score mean; score variance; distance in the sample space Available at various institutes of the ASCR
A Measure of Variability WIthin Parametric Families of Continuous Distributions

A continuous probability measure on an open interval of the real line induces in it a unique geometry, "center of gravity" of which is the typical value of the distribution. In the paper is identified ...

Fabián, Zdeněk
Ústav informatiky, 2022

Large Perimeter Objects Surrounded by a 1.5D Terrain
Keikha, Vahideh
2022 - English
Given is a 1.5D terrain T , i.e., an x-monotone polygonal chain in R2. Our objective is to approximate the largest area or perimeter convex polygon with at most k vertices inside T . For a constant k > 0, we design an FPTAS that efficiently approximates such polygons within a factor (1 − ǫ). For the special case of the´largest-perimeter contained triangle in T , we design an O(n log n) time exact algorithm that matches the same result for the area measure. Available in digital repository of the ASCR
Large Perimeter Objects Surrounded by a 1.5D Terrain

Given is a 1.5D terrain T , i.e., an x-monotone polygonal chain in R2. Our objective is to approximate the largest area or perimeter convex polygon with at most k vertices inside T . For a constant k ...

Keikha, Vahideh
Ústav informatiky, 2022

The 2020 Election In The United States: Beta Regression Versus Regression Quantiles
Kalina, Jan
2021 - English
The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available prognoses as well as from the presented opinion polls. We perform regression modeling for explaining the election results by means of three demographic predictors for individual 50 states: weekly attendance at religious services, percentage of Afroamerican population, and population density. We compare the performance of beta regression with linear regression, while beta regression performs only slightly better in terms of predicting the response. Because the United States population is very heterogeneous and the regression models are heteroscedastic, we focus on regression quantiles in the linear regression model. Particularly, we develop an original quintile regression map, such graphical visualization allows to perform an interesting interpretation of the effect of the demographic predictors on the election outcome on the level of individual states. Keywords: elections results; electoral demography; quantile regression; heteroscedasticity; outliers Fulltext is available at external website.
The 2020 Election In The United States: Beta Regression Versus Regression Quantiles

The results of the presidential election in the United States in 2020 desire a detailed statistical analysis by advanced statistical tools, as they were much different from the majority of available ...

Kalina, Jan
Ústav informatiky, 2021

DC 5.3 Základní statistický model velkého měřítka
Brabec, Marek; Malý, Marek; Malá, I.; Hladká, Adéla
2021 - Czech
BIBLIOGRAFICKÉ ÚDAJE: Výzkumná zpráva č. SS02030031-V94, evidenční č. ENV/2021/118018. Praha: ICS CAS, 2021. 47 s. ANOTACE: Obsahem tohoto dokumentu je popis prostorového statistického modelu velkého měřítka vyvinutého z dosavadních dat poskytnutých ČHMÚ. Prostorový model bude (po nezbytných aktualizacích a případných modifikacích daných jak časovým vývojem samotného znečištění, který lze očekávat např. v souvislosti s dopady pandemie covid-19, tak dalším vývojem statistické metodologie) v dalších letech používán jako podklad pro vývoj algoritmu prostorové optimalizace umístění měřicích stanic na základě statistického designu. Jde o několik variantních řešení, která zohledňují různé aspekty statistického chování pole koncentrací vybraných znečišťujících látek. This document describes suite of fundamental large-scale statistical models developed from data provided by CHMI (Czech Hydrometeorological Institute). The models were constructed in several variants, differing in complexity, detail and computational demands. Spatial models will be, after some further developments and modifications (necessary not only from the natural model evolution but also due to systematic changes brought e.g. by covid outbreak influences) used as the main input for optimization algorithms constructed for selection of measurement stations on the principles of statistical design theory and methods. Keywords: spatial field of pollutant concentration; geostatistics; GAM; INLA; spatially varying covariance model; Bayesian modeling Available in digital repository of the ASCR
DC 5.3 Základní statistický model velkého měřítka

BIBLIOGRAFICKÉ ÚDAJE: Výzkumná zpráva č. SS02030031-V94, evidenční č. ENV/2021/118018. Praha: ICS CAS, 2021. 47 s. ANOTACE: Obsahem tohoto dokumentu je popis prostorového statistického modelu velkého ...

Brabec, Marek; Malý, Marek; Malá, I.; Hladká, Adéla
Ústav informatiky, 2021

City simulation software for modeling, planning, and strategic assessment of territorial city units
Svítek, M.; Přibyl, O.; Vorel, J.; Garlík, B.; Resler, Jaroslav; Kozhevnikov, S.; Krč, Pavel; Geletič, Jan; Daniel, Milan; Dostál, R.; Janča, T.; Myška, V.; Aralkina, O.; Pereira, A. M.
2021 - English
SVÍTEK, M., PŘIBYL, O., VOREL, J., GARLÍK, B., RESLER, J., KOZHEVNIKOV, S., KRČ, P., GELETIČ, J., DANIEL, M., DOSTÁL, R., JANČA, T., MYŠKA, V., ARALKINA, O., PEREIRA, A. M. City simulation software for modeling, planning, and strategic assessment of territorial city units. 1.1. Prague: CTU & ICS CAS, 2021. Technical Report. ABSTRACT: The Smart Resilience City concept is a new vision of a city as a digital platform and eco-system of smart services where agents of people, things, documents, robots, and other entities can directly negotiate with each other on resource demand principals providing the best possible solution. It creates the smart environment making possible self-organization in sustainable or, when needed, resilient way of individuals, groups and the whole system objectives. Keywords: Smart city; City simulation; Energy resource-demand modelling; Environmental modelling; Synthetic population; Transport modelling Available on request at various institutes of the ASCR
City simulation software for modeling, planning, and strategic assessment of territorial city units

SVÍTEK, M., PŘIBYL, O., VOREL, J., GARLÍK, B., RESLER, J., KOZHEVNIKOV, S., KRČ, P., GELETIČ, J., DANIEL, M., DOSTÁL, R., JANČA, T., MYŠKA, V., ARALKINA, O., PEREIRA, A. M. City simulation software ...

Svítek, M.; Přibyl, O.; Vorel, J.; Garlík, B.; Resler, Jaroslav; Kozhevnikov, S.; Krč, Pavel; Geletič, Jan; Daniel, Milan; Dostál, R.; Janča, T.; Myška, V.; Aralkina, O.; Pereira, A. M.
Ústav informatiky, 2021

Score matching filters for Gaussian Markov random fields with a linear model of the precision matrix
Turčičová, Marie; Mandel, J.; Eben, Kryštof
2021 - English
We present an ensemble filter that provides a rigorous covariance regularization when the underlying random field is Gaussian Markov. We use a linear model for the precision matrix (inverse of covariance) and estimate its parameters together with the analysis mean by the Score Matching method. This procedure provides an explicit expression for parameter estimators. The resulting analysis step formula is the same as in the traditional ensemble Kalman filter. Keywords: Score matching; ensemble filter; Gaussian Markov random field; covariance modelling Available at various institutes of the ASCR
Score matching filters for Gaussian Markov random fields with a linear model of the precision matrix

We present an ensemble filter that provides a rigorous covariance regularization when the underlying random field is Gaussian Markov. We use a linear model for the precision matrix (inverse of ...

Turčičová, Marie; Mandel, J.; Eben, Kryštof
Ústav informatiky, 2021

Assessment of Independent EEG Components Obtained by Different Methods for BCI Based on Motor Imagery
Húsek, Dušan; Frolov, A. A.; Kerechanin, J. V.; Bobrov, P.D.
2021 - English
Eight methods of decomposition of a multichannel EEG signal are compared in terms of their ability to identify the most physiologically significant components. The criterion for the meaningfulness of a method is its ability to reduce mutual information between components; to create components that can be attributed to the activity of dipoles located in the cerebral cortex; find components that are provided by other methods and for this case; and at the same time, these components should most contribute to the accuracy of the BCI based on imaginary movement. Independent component analysis methods AMICA, RUNICA and FASTICA outperform others in the first three criteria and are second only to the Common Spatial Patterns method in the fourth criterion. The components created by all methods for 386 experimental sessions of 27 subjects were combined into more than 100 clusters containing more than 10 elements. Additionally, the components of the 12 largest clusters were analyzed. They have proven to be of great importance in controlling BCI, their origins can be modeled using dipoles in the brain, and they have been detected by several degradation methods. Five of the 12 selected components have been identified and described in our previous articles. Even if the physiological and functional origins of the rest of identified components’ are to be the subject of further research, we have shown that their physiological nature is at least highly probable.\n Keywords: brain–computer interface; motor imagery; blind source separation; independent component analysis; common spatial patterns; cluster analysis; EEG pattern extraction; EEG analysis; ICA; CSP; BCI; motor imagery Available at various institutes of the ASCR
Assessment of Independent EEG Components Obtained by Different Methods for BCI Based on Motor Imagery

Eight methods of decomposition of a multichannel EEG signal are compared in terms of their ability to identify the most physiologically significant components. The criterion for the meaningfulness of ...

Húsek, Dušan; Frolov, A. A.; Kerechanin, J. V.; Bobrov, P.D.
Ústav informatiky, 2021

About project

NRGL provides central access to information on grey literature produced in the Czech Republic in the fields of science, research and education. You can find more information about grey literature and NRGL at service web

Send your suggestions and comments to nusl@techlib.cz

Provider

http://www.techlib.cz

Facebook

Other bases